
Comput Mech (2016) 57:19–35
DOI 10.1007/s00466-015-1219-1

ORIGINAL PAPER

Isogeometric analysis for parameterized LSM-based structural
topology optimization

Yingjun Wang1 · David J. Benson1

Received: 3 August 2015 / Accepted: 12 November 2015 / Published online: 23 November 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract In this paper, we present an accurate and efficient
isogeometric topology optimization method that integrates
the non-uniform rationalB-splines based isogeometric analy-
sis and the parameterized level set method for minimal
compliance problems. The same NURBS basis functions
are used to parameterize the level set function and evalu-
ate the objective function, and therefore the design variables
are associated with the control points. The coefficient matrix
that parameterizes the level set function is set up by a colloca-
tion method that uses the Greville abscissae. The zero-level
set boundary is obtained from the interpolation points cor-
responding to the vertices of the knot spans. Numerical
examples demonstrate the validity and efficiency of the pro-
posed method.

Keywords Isogeometric analysis · NURBS · Topology
optimization · Parameterization · Level set method

1 Introduction

Topology optimization (TO), a computational technique to
optimally distribute material within a prescribed design
domain, is becoming an efficient tool for guiding designers
and engineers during the early stages of design. During the
past three decades, TO has been used principally for tradi-
tionalmechanics but its applications have been spreading to a
wide range of other engineering domains such as fluids [16],
heat transfer [24], vibration [41], electromagnetics [72] and
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multiphysics [56]. Various methods have been considered
to solve TO problems, and the most common methods
among these are density-based, e.g., homogenization meth-
ods [1,10,59] and solid isotropic material with penalization
(SIMP) methods [9,52,71]. These density-based methods
use two or more phases to describe the material distribu-
tion of the design domain and usually one is a void phase
representing “no material”. The material distribution typi-
cally adopts an element-wise constant method [60], where
additional stabilization and filtering need to be introduced
to eliminate numerical artifacts such as checkerboarding and
mesh dependency [31,57]. Besides the density-based meth-
ods, the evolutionary structural optimization (ESO) [70] and
the genetic algorithm [65] etc. are also applicable to the TO.

Unlike the above methods using explicit material repre-
sentation, another major class of TO methods, based on the
level set method (LSM), uses an implicit description to para-
meterize the geometry [4,62]. The LSM, proposed by Osher
and Sethian [47] for the numerical analysis of surfaces and
shapes, defines the interfaces between material phases by
iso-contours of the level set function (LSF) [46,55]. Due
to the representation of the interfaces, the LSM-based TO
avoids the ambiguities of intermediate material phases and
the mesh dependency that usually exists in the density-
based methods. At first, the LSM-based TO implemented
the design optimization by solving Hamilton-Jacobi partial
differential equation (PDE) that is naturally related to the
shape derivative from the classical shape variational analy-
sis [2,4,61,62]. However, the Hamilton-Jacobi PDE needs
to be solved explicitly in the conventional LSMs. This lim-
its the time step size to a small value required to ensure the
numerical stability for an explicit time-marching difference
scheme [39] and usually requires the reinitialization of the
LSF when it becomes too flat or steep [20], which decreases
the efficiency of the TO.
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In order to overcome these shortcomings, parameterized
LSMs were developed. The Hamilton-Jacobi PDE is con-
verted into a simpler set of ordinary differential equations
(ODEs) so that the Hamilton-Jacobi PDE are not solved
directly. Chen et al. [17,18] used multivariate B-splines on
a uniform grid to parameterize the LSF in the TO because
of the smoothness and local control properties of B-splines,
but they only used the linear B-spline basis functions which
actually are the same as the linear Lagrange basis functions.
Wang et al. [63,64] used radial basis functions (RBFs) as
parameterized basis functions in the LSM-based TO prob-
lems. Luo et al. [38–40] further presented a parameterized
LSM using compactly supported RBFs (CS-RBFs). Wei et
al. [69] used the extended finite element method (XFEM)
to address elements across boundaries and obtained more
accurate optimal results. For a comprehensive review of the
LSM-based TO, interested readers may refer to the article of
van Dijk et al. [60].

In practice, most of TO methods use the conventional
finite element method (FEM) [29] for the structural response
analysis and sensitivity calculation. However, there are some
drawbacks if the FEM is used. The first one is that the FEM
requires the approximation of the design domain which dis-
connects the analysis from its geometric model. The second
one is that the continuity is very low between neighbor-
ing elements, e.g., C0 continuous for the displacement and
discontinuous for the stress, whichmay influence the compu-
tational accuracy. The third one is that the efficiency will be
greatly decreased when high-order elements are used, e.g.,
the ratio of linear Lagrange quadrilateral elements to nodes is
roughly one, but for quadratic elements, it increases to four.
In recent years, isogeometric analysis (IGA) [19,28], which
uses the same basis functions for the geometric and computa-
tional models, has become one of the most efficient methods
to replace conventional computational methods (e.g., the
FEM and the boundary element method) in the computations
of a variety of domains [5,7,8,12,13,26,27,67,68]. Due to
its high accuracy and high continuity, IGA may be used in
TO problems to overcome the drawbacks of the traditional
FEM.

The first isogeometric TOwas proposed by Seo et al. [53],
where the trimmed surface analysis technique [33] was
employed for the structural response analysis and the sen-
sitivity calculation, but the implementation is complicated
and the computational time for the analysis may increase
considerably when a large number of trim curves are used in
a trimmed surface. Kumar et al. [34] used B-spline finite
elements in density-based TO to obtain results that were
free from checkerboard artifacts, where a penalization of
the density gradient was used to smooth the density and
obtain a mesh-independent solution. Dedè et al. [21] used
a phase-field model for the formulation and the solution
of the TO and used IGA for its geometric exactness in the

design domain and for the solution of phase field problems.
Qian [51] presented a density-based TO where the design
space is restricted to the B-spline space, and the B-spline
space was free from checkerboards without additional filter-
ing or penalty terms. In addition to TO problems, IGA has
also been used in shape optimization problems [6,43,45,50].

Both the parameterized LSM and IGA have their advan-
tages in TO, but isogeometric parameterized LSM-based TO
has never been tried. In this paper, we will present a new
parameterized LSMusingNURBS, and couple this LSMand
IGA to obtain a new TO method that has the best character-
istics of both the parameterized LSM and IGA such as high
accuracy, smooth boundaries, and high efficiency for high-
order elements. An outline of the remainder of this paper
is as follows: In Sect. 2, the NURBS-based IGA is briefly
reviewed. Sect. 3 describes the parameterized LSM-based
TO that uses the NURBS basis functions to parameterize the
LSF. The isogeometric LSM-based TO method is presented
in Sect. 4. Thereafter numerical examples are presented in
Sect. 5 to demonstrate the accuracy and efficiency of the
newmethod. Finally, conclusions and future research are dis-
cussed in Sect. 6.

2 Summary of NURBS-based IGA

In IGA, non-uniform rational B-splines (NURBS) [48],
constructed from B-splines, are commonly used for the
numerical discretization. A knot vector Ξ , which consists
of n spline basis functions, is a sequence of non-decreasing
real numbers representing parametric coordinates of a curve:

Ξ = {ξ1, ξ2, ..., ξn+p+1}, (1)

where p is the order of theB-spline. The interval [ξ1, ξn+p+1]
is called a patch, and the knot interval [ξi , ξi+1) is called a
span.

Given a knot vector, the B-spline basis functions are recur-
sively defined with the Cox-de Boor formula [14]:

for zero order (p = 0),

Bi,p(ξ) =
{
1 if ξi ≤ ξ < ξi+1,

0 otherwise,
(2)

and for non-zero order (p > 0)

Bi,p(ξ)= ξ − ξi

ξi+p − ξi
Bi,p−1(ξ)+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,p−1(ξ).

(3)

It is observed that the B-spline basis functions constitute a
partition of unity.
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n∑
i=1

Bi,p(ξ) = 1. (4)

Another important property of the B-spline basis functions
is that the continuity between knot spans is C p−k where k is
the multiplicity of the knots.

Two dimensional B-spline basis functions are constructed
as tensor products,

B j,q
i,p (ξ, η) = Bi,p(ξ)Bj,q(η). (5)

Bi,p(ξ) and Bj,q(η) functions of order p and q, corre-
sponding to knot vectors Ξ = {ξ1, ξ2, ..., ξn+p+1} and
H = {η1, η2, ..., ηm+q+1}.

A bivariate B-spline surface is obtained as the tensor prod-
uct of two B-spline curves

S(ξ, η) =
n∑

i=1

m∑
j=1

B j,q
i,p (ξ, η)P i, j , (6)

where P i, j are the control points. The patch for the surface
is now the domain [ξ1, ξn+p+1] × [η1, ηm+q+1].

NURBS basis functions are obtained from B-splines by
assigning a positive weight wi to each basis function

Ni,p(ξ) = Bi,p(ξ)wi∑n
j=1 Bj,p(ξ)w j

, (7)

Two-dimensional NURBS basis functions are constructed
as

N j,q
i,p (ξ, η) = Bi,p(ξ)Bj,q(η)wi, j∑n

k=1
∑m

l=1 Bk,p(ξ)Bl,q(η)wk,l
, (8)

where wi, j is the weight value corresponding to the tensor
product Bi,p(ξ)Bj,q(η).

A NURBS surface of order p in ξ direction and order q
in η direction is a bivariate piecewise rational function of the
form

S(ξ, η) =
n∑

i=1

m∑
j=1

N j,q
i,p (ξ, η)Pi, j , (9)

where P i, j are the control points. If all weights are equal to
1, Eq. (9) has the same form as Eq. (6).

3 NURBS parameterized LSM-based TO

In the conventional implicit level set methods, structural
boundaries are embedded into a scalar function of higher
dimension as the zero level set, which leads to a level set
model mathematically described by the Hamilton-Jacobi

PDE [38]. However, solving the Hamilton-Jacobi PDE is
difficult and time-consuming. To solve this problem, parame-
terized LSMs are proposed to convert the Hamilton-Jacobi
PDE into ordinary differential equations. In this section, we
present a new parameterized LSM-based TO using NURBS
basis functions that inherits the smoothness and local control
properties of the NURBS [48].

3.1 Level set representation of optimization model

In the LSM, the structural boundary ∂Ω is implicitly embed-
ded as the zero level set of a one-dimensional-higher LSF
Φ(x, t) which is Lipschitz continuous, where t is a pseudo
time. The LSF Φ(x, t) is defined over a reference domain
D ⊂ Rd (d = 2 or 3) and the level set representation of the
structure is defined as⎧⎪⎨
⎪⎩

Φ(x, t) > 0 ∀x ∈ Ω\∂Ω (inside),

Φ(x, t) = 0 ∀x ∈ ∂Ω
⋂

D (boundary),

Φ(x, t) < 0 ∀x ∈ D\Ω (outside).

(10)

Differentiating the LSF Φ(x, t) with respect to the
pseudo-time t , the Hamilton-Jacobi equation is obtained [38]

∂Φ(x, t)

∂t
− νn| � Φ(x, t)| = 0, Φ(x, 0) = Φ0(x), (11)

where the normal velocity νn = (∂x/∂t) · n and the normal
direction n = −�Φ/|�Φ|, andΦ0(x) is the initial LSF. The
Hamilton-Jacobi PDE is solved to move the boundary in the
normal direction.

However, a general analytical function for the scalar LSF
is usually unknown in the conventional LSM-based TO, and
therefore the PDE in Eq. (11) must be solved numerically
[42]. Moreover, given the Courant–Friedrichs–Lewy (CFL)
condition [23], the velocity extension and reinitialization
must be handled carefully.

3.2 Parameterized LSM using NURBS basis functions

In order to avoid solving the Hamilton-Jacobi PDE directly,
parameterizedLSMsare introduced into theTO, and the orig-
inal PDE is transformed into a set of ODEs that are simpler to
solve numerically. The core idea of the parameterized LSM
is to use the basis functions (note that NURBS are not inter-
polatory), based on a set of grid points, to represent the LSF
in a parameterized mode as

Φ(x, t) = N(x)φ(t) =
∑
i

Ni (x)φi (t), (12)

where φi (t) is the i th expansion coefficient associating with
the i th grid point and Ni (x) is the corresponding basis func-
tion. It should be noted that φi (t) is not the LSF value but a
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coefficient of the i th grid point if Ni (φ j ) �= δi j , where δi j is
Kronecker delta. After this parameterization, the LSF asso-
ciated with both space and time is divided into the spatial
terms Ni (x) and the time dependent terms φi (t), and only
the latter are updated during the optimization procedure.

Substituting Eq. (12) to Eq. (11), the Hamilton-Jacobi
PDE is rewritten as

N(x)T
∂φ(t)

∂t
− νn|(�N(x))Tφ(t)| = 0, (13)

where the νn related to the time derivative of the expansion
coefficients is expressed as

νn = N(x)T

|(�N(x))Tφ(t)|
∂φ(t)

∂t
. (14)

Different interpolation functions are available for this
parameterization, for example, the linear B-spline basis func-
tion used by Chen et al. [17,18], globally supported RBFs
used by Wang et al. [63] and CS-RBFs proposed by Luo et
al. [39,40]. However, their methods are all based on the inter-
polation points on the design domain, which is not suitable
for the isogeometric interpolations because the control points
are not necessarily in the design domain.

In order to use control points to interpolate the LSF of
the design domain, a new parameterized method based on
NURBS basis functions is proposed herein. Taking a prob-
lem in one dimension as an example, when the parametric
coordinate ξ is introduced, Eq. (12) may be written as

Φ(x, t) = Φ(x(ξ), t) =
∑
i

Ni (ξ)φi (t). (15)

Note that no parametric coordinates exist in the parameteriza-
tion methods based on RBFs or CS-RBF where the physical
coordinates are used directly. In order to briefly describe the
formulations, the variable ξ and x will be omitted when the
omission does not influence the clarity.

In practice, the initial LSF as Φ(x, 0) is known when
the geometry of the initial design domain is known, but the
initial expansion coefficients of the control points φi (0) are
unknown. If the number of control points is m, the num-
ber of unknowns is also m, so there are m equations to be
set up and the expansion coefficients are obtained by solv-
ing these equations. Therefore, m collocation points need to
be sampled in the initial design domain to set up the equa-
tions as Eq. (12). Several methods for selecting collocation
points have been proposed, e.g., the Gaussian quadrature
scheme [15], the maximum basis point scheme [35] and the
Greville abscissae scheme [32]. According to the compari-
son of Li and Qian [36], the Greville abscissae performs the
best in terms of the the stability and accuracy in isogeometric
computations. Therefore, we also use the Greville abscissae
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Fig. 1 An example of the Greville abscissae collocation scheme based
on the surface formed from knot vectors Ξ = {0, 0, 0, 1, 1, 1} and
H = {0, 0, 0, 1, 1, 1}

for the collocation points. Greville abscissae of a p-order
NURBS with m control points are defined by

ζi = 1

p
(ξi+1+ξi+2+, · · · ,+ξi+p), i = 1, 2, . . . ,m, (16)

where ξi is the i th knot of the knot vector Ξ = {ξ1, ξ2, ...,
ξm+p+1}.

For a collocation point on a NURBS surface, there are two
Greville abscissae representing the coordinates in ξ and η

coordinates, respectively, and x(ξ) and Ni (ξ) should be rep-
resented as x(ξ, η) and Ni (ξ, η). Once the Greville abscissae
of the collocation points are obtained, the physical coordi-
nates of the collocation points may be evaluated by Eq. (9),
and then the LSF values of the collocation points are obtained
through the LSF. Note that the collocation points and the con-
trol points have a one-to-one correspondence. An example
of collocation points in a bi-quadratic surface formed from
knot vectors Ξ = {0, 0, 0, 1, 1, 1} andH = {0, 0, 0, 1, 1, 1}
is shown in Fig. 1, where it can be found that each colloca-
tion point has its corresponding control point although their
locations are usually different.

Applying Eq. (12) at each collocation point yields equa-
tions that may be assembled into a linear equation system

Φ = Aφ, (17)

where Φ is a vector consisting of the initial LSF values at
all the collocation points, A is a matrix consisting of the
NURBS basis functions values corresponding to the collo-
cation points, and φ is a vector of the expansion coefficients
at the control points. The expansion coefficients are obtained
by solving the above equation . When the expansion coeffi-
cients are updated in the TO procedure, the new LSF values
are evaluated by Eq. (17). Note that the matrix A is constant
during the TO procedure. The LU factorization of A is per-
formed only once, and each coefficient update only requires
the inexpensive forward and backward substitution.
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3.3 Sensitivity analysis

In the NURBS parameterized LSM-based TO, the expansion
coefficients (φi in Eq. (12)) are used as the design variables
instead of the LSFvalues in the conventional LSM-basedTO.
For theminimumcompliance design problem, themathemat-
ical model [63] may be defined as

Minimize : J (u, Φ) =
∫

Ω

εT (u)Eε(u)H(Φ)dΩ,

Subject to : a(u, v, Φ) = l(v, Φ), u|∂Ω = u0, ∀v ∈ U,

V (Ω) =
∫

Ω

H(Φ)dΩ ≤ Vmax, (18)

where H(Φ) is the Heaviside function [61],

H(Φ) =
{
1 i f Φ ≥ 0,

0 i f Φ < 0,
(19)

J (u, Φ) is the objective function, E is the elasticity tensor
and ε is the strain. The displacement is u, u0 is the prescribed
displacement on the admissible Dirichlet boundary and v

is the virtual displacement belonging to the space U . The
inequality V (Ω) ≤ Vmax represents the volume constraint.

The bilinear form for the strain energy a(u, v, Φ) and the
linear form for the load l(v, Φ) may be written

a(u, v, Φ) =
∫

Ω

εT (u)Eε(v)H(Φ)dΩ, (20)

l(v, Φ) =
∫

Ω

f vH(Φ)dΩ +
∫

Γ

pvdΓ, (21)

where Ω is the material domain and Γ is the boundary, f
is the body force and p is the boundary traction, and H(Φ)

is Heaviside function whose partial derivative is the Dirac
function δ(Φ).

The original constrained optimization problem is con-
verted into an unconstrained problem by using Lagrange
multipliers

L(u, Φ) = J (u, Φ) + Λ

[∫
Ω

H(Φ)dΩ − Vmax

]
, (22)

where Λ is the Lagrange multiplier. The shape derivative of
Lagrangian function L(u, Φ) in Eq. (22) is

∂L(u, Φ)

∂t
=

∫
Ω

[Λ − F(u)] δ(Φ)|�Φ|vndΩ, (23)

where F(u) = εT (u)Eε(u).
Substituting the normal velocity field νn in Eq. (14) into

Eq. (23), the derivative of Lagrangian function may be
expressed as

∂L(u, Φ)

∂t
=

∫
Ω

[Λ − F(u)] δ(Φ)NT ∂φ(t)

∂t
dΩ

=
m∑
i=1

∫
Ω

[Λ − F(u)] δ(Φ)Ni
∂φi (t)

∂t
dΩ

=
m∑
i=1

∫
Ω

−F(u)δ(Φ)Ni
∂φi (t)

∂t
dΩ

+ Λ

m∑
i=1

∫
Ω

δ(Φ)Ni
∂φi (t)

∂t
dΩ, (24)

where φi is the i th design variable (i.e. the expansion coeffi-
cients of the control points) and i = 1, 2, . . . ,m where m is
the number of design variables.

Using the chain rule to differentiate the Lagrangian func-
tion Eq. (22), the shape derivative is rewritten as

∂L(u, Φ)

∂t
=

m∑
i=1

∂ J (u, Φ)

∂φi (t)

∂φi (t)

∂t
+ Λ

m∑
i=1

∂V (Φ)

∂φi (t)

∂φi (t)

∂t
.

(25)

Comparing Eqs. (24) and (25), the design sensitivities asso-
ciating with expansion coefficients may be written as

∂ J (u, Φ)

∂φi (t)
=

∫
Ω

−F(u)δ(Φ)NidΩ, (26)

∂V (Φ)

∂φi (t)
=

∫
Ω

δ(Φ)NidΩ, (27)

where δ(Φ) may be defined as 1
π

γ

Φ2 + γ 2 and γ should be

chosen as 2-4 times as the element size based on the numer-
ical results in [38].

The above design sensitivities are in the domain integral
form, which has the ability to create new holes in the design
domain according to Luo et al. [38]. The major differences
between these sensitivities and those in the conventional RBF
parameterizedLSM-basedTO [37–39,63] are that the expan-
sion coefficients (i.e., design variables) φi correspond to the
control points, not the nodes, and the interpolation functions
Ni are the NURBS basis functions, not the RBF or CS-RBFs.

3.4 The update scheme

The optimality criteria (OC) method attempt to satisfy a set
of criteria related to the behavior of the structure to solve
structural optimization problems [25]. It is efficient for opti-
mization problems with a large number of design variables
and only a few constraints [11], which is exactly the case
in continuous TO with a global material volume constraint.
Therefore, the OC method is used here to update the design
variables.
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Assuming that the design variables are active, the station-
ary condition is that Eq. (25) equals 0, which may be also
rewritten as

∂L(u, Φ)

∂φi
= ∂ J (u, Φ)

∂φi
+ Λ

∂V (Φ)

∂φi
= 0. (28)

The updating method of Luo et. al. [39] is

φ
(k+1)
i =

(
−∂ J (u, Φ)

∂φ
(k)
i

/ (
Λ(k) ∂V (Φ)

∂φ
(k)
i

))
φ

(k)
i . (29)

In order to avoid the zero term in the denominator, a very
small positive constant μ is introduced into Eq. (29),

φ
(k+1)
i = D(k)

i φ
(k)
i , (30)

where

D(k)
i = −∂ J (u, Φ)

∂φ
(k)
i

/ (
max

(
μ,Λ(k) ∂V (Φ)

∂φ
(k)
i

))
. (31)

To implement this update method, the variable vector φ is
normalized to a vector φ ranging from 0 to 1, and minimal
and maximal limits are set to φmin = 0.0001 and φmax = 1.
The final form for the method is

φ
(k+1)
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
max

{
(1 − m)φ

(k)
i , φmin

}
, if (D(k)

i )ζ φ
(k)
i ≤ max

{
(1 − m)φ

(k)
i , φmin

}
(D(k)

i )ζ φ
(k)
i , if max

{
(1 − m)φ

(k)
i , φmin

}
< (D(k)

i )ζ φ
(k)
i < min

{
(1 + m)φ

(k)
i , φmax

}
,

min
{
(1 + m)φ

(k)
i , φmax

}
, if ((D(k)

i )ζ φ
(k)
i ≥ min

{
(1 + m)φ

(k)
i , φmax

} (32)

where ζ (0 < ζ < 1) is the damping factor and m (0 <

m < 1) is the move limit, which are set to 0.3 and 0.05 in
this paper, respectively. Note that the design variables rather
than the LSFs are updated in the parameterized LSM-based
TO. When the new normalized variable vector φ is obtained,
it will be rescaled to obtain the actual vector φ.

Another important issue is to efficiently calculate the
Lagrange multiplier Λ in Eq. (31). A simple scheme to cal-
culate the Lagrangemultiplier is the bisectionmethod, which
has been successfully used in both the SIMP TO [11,58] and
the LSM-based TO [39,66]. In the bisection method, lower
and upper bounds are repeatedly calculated by an embedded
loop during the iterations to satisfy the volume constraint to
within a small tolerance. In order to further accelerate the cal-
culation of Lagrange multiplier, the more efficient Ridders’
method [49] is used here to replace the bisection method.

The volume constraint F(Λ) is

F(Λ) = V (Λ) − Vmax = 0, (33)

where V (Λ) is volume (area for 2D problems) where the
LSF value is greater than zero (Φ > 0) when the Lagrange
multiplier is Λ, and Λmax is maximal allowed volume as
shown in Eq. (18).

Ridders’ method, a root finding method, is used to find
V (Λ) satisfying the above equation as follows:

• Step 1: Set lower bound ΛL and upper bound ΛR of
Lagrange multiplier Λ, and use Eq. (32) and the scal-
ing method to evaluate the new variable vector φL and
φR respectively, and then evaluate the total Φ > 0 area
(2D problem) VL and VR (The approach for evaluating V0
will be discussed in Sect. 4.2.), and use Eq. 33 to obtain
FL = F(VL) and FL = F(VR), respectively.

• Step 2: SetΛM = 1/2(ΛL +ΛR), and evaluate theΦ > 0
area VM and use Eq. 33 to obtain FM = F(VM ).

• Step 3: Evaluate a new Lagrange mulitplier Λ∗ by

Λ∗ = ΛM + (ΛM − ΛL)
sign(FL − FR)FM√

F2
M − FL FR

, (34)

and use Eq. (32) and the scaling method to evaluate the a
variable vector φ∗, and then evaluate the total Φ > 0 area
V ∗ and corresponding F∗ = F(V ∗).

• Step 4: Update bounds of Lagrange multiplier:

If F∗ == 0 then stop updating;
else if (FM · F∗ < 0) and (ΛM < Λ∗) then ΛL = ΛM ,
FL = FM , ΛR = ΛV ∗ and FR = F∗;
else if (FM ·F∗ < 0) and (ΛM >= Λ∗) then ΛR = ΛM ,
FR = FM , ΛL = ΛV ∗ and FL = F∗;
else if (FL · F∗ < 0) then ΛR = ΛV ∗ and FR = F∗;
else ΛL = ΛV ∗ and FL = F∗.
• Step 5: Repeat Step 2 to Step 4 until |FL | < tol or

|FR | < tol, where tol is a small number such as 10−5,
and V ∗ is the Lagrangemultiplier that satisfies Eq. (33)
and φ∗ is the updated variable vector.

After the completion of the update procedure, one itera-
tion of the TO is completed, and the new objective function
value Jnew is computed. When the relative difference of the
objective function value between two iterations is less than
a small number such as 0.0001, the iterative solution can be
stopped and the optimal result is obtained.
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4 IGA for the parameterized level set based TO

4.1 Spatial discretization

In the conventional TO, the FEM is commonly used for the
sensitivity analysis, discretizing the design domain Ω into
elements. The error of this discretization may lead to accu-
racy problems [28]. In thiswork, the exactNURBSgeometric
model created by the TO is used for the sensitivity analysis
by using isogeomentric analysis (IGA). Therefore, no spatial
discretization error is introduced in the analysis of the TO.

One of themajor differences between IGAand the conven-
tional FEM is that the coefficients of the basis functions are
referred to control points instead of nodes, and the NURBS
basis functions are not interpolatory like theLagrangianFEM
basis functions.Avariable value x (e.g., coordinate, displace-
ment, or force) corresponding to a point with the geometric

parametric coordinate (ξ, η) is evaluated from the control
point values

x(ξ, η) =
∑
A

NA(ξ, η)xA, (35)

where NA is the basis function of the Ath control point of
the control points that influence on (ξ, η), and xA is the cor-
responding value of the control point.

The spatial discretization of the different schemes is
shown Fig. 2, with a patch containing 3× 3 elements. When
linear elements (p = 1) are used, the NURBS elements are
the same as the Lagrange elements, and the control points
coincide with the 16 nodes of the FEM. For quadratic ele-
ments (p = 2), the number of nodes increases to 49 but
the number of control points is only 25. This proves that the
increase of degrees of freedom (DOFs) is much lower in IGA
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Fig. 2 Spatial discretization of FEM and IGA for a 1 × 1 single-patch surface model: a linear NURBS/Lagrange elements, b quadratic Lagrange
elements and c quadratic NURBS elements
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(a) (b)

Fig. 3 Control points and interpolation points of the single-patch sur-
face model in Fig. 2 (p = 2): a control points and b interpolation points

when the elements are elevated to higher order. In IGA, the
control points influencing an element are not necessarily in
the element domain and may be out of the problem domain.
Additionally, the continuity between the quadratic NURBS
elements is C1 (see Fig. 2c) but the continuity is always C0

between the Lagrange elements (see Fig. 2b).

4.2 Interpolation points for LSF

In Sect. 3.4, the interior of the structure is defined as the
area where the LSF value is greater than zero, and it needs
to be evaluated in the update procedure for the design vari-
ables. The visualization of the optimal result also requires the
LSF of the design domain. In order to track the zero-level
set boundaries and perform the visualization, interpolation
points in the design domain need to be sampled and the LSF

values of the points need to be obtained. Using the LSF val-
ues of the interpolation points, the zero-level set boundaries
and the geometry of the optimal structure are obtained by
interpolation methods.

In this work, we use the vertices of the NURBS spans (i.e.
elements in IGA) as interpolation points, which are the same
as the nodes for linear elements. The physical coordinates
of the points are available by the point inversion (projection)
algorithm [48], so no meshing is needed. Now, there are two
set of points: (1) control points and (2) interpolation points.
Figure 3 shows the control points and interpolation points of
the patch model (p = 2) in Fig. 2. It should be noted that the
collocation points are independent of the element order in this
method. Therefore, when the element order is changed, the
control points are changed accordingly, but the interpolation
points are still the original ones. This is not strictly necessary,
but was done to simplify the implementation of the research.

The LSF values of the interpolation points may be
obtained by Eq. (17) with matrix A replaced with a new
matrix B that consists of the NURBS basis functions corre-
sponding to the interpolation points. It should be noted that
matrix B is a m × n matrix where m is the number of inter-
polation points and n is the number of control points. When
the LSF values are known, the zero-level set boundaries and
the area where LSF value is greater than zero are obtained
by interpolation.

There usually are not multiple zero-level set boundaries
that cross the same element if themesh is sufficiently refined.
According to theLSFvalues of the vertices, the elementsmay
be divided into five types as shown in Fig. 4. An empty ele-

4 0Φ > 3 0Φ <

1 0Φ > 2 0Φ >

6 0Φ =

5 0Φ =

4 0Φ < 3 0Φ <

1 0Φ > 2 0Φ >

6 0Φ =

5 0Φ =

1 0Φ > 2 0Φ <

4 0Φ < 3 0Φ <

5 0Φ =

6 0Φ =

Trimming
curve

Approximated
trimming curve

Solid area

Approximated
Solid area

1 0Φ < 2 0Φ <

4 0Φ < 3 0Φ <

4 0Φ > 3 0Φ >

1 0Φ > 2 0Φ >

(a) (b) (c)

(d) (e)

Fig. 4 Different types of elements in terms of the vertices: a empty element with 4 negative LSF vertices, b trimmed element with 1 positive LSF
vertex , c trimmed element with 2 positive LSF vertices, d trimmed element with 3 positive LSF vertices and (3) solid element with 4 positive LSF
vertices
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4 0Φ > 3 0Φ <

1 0Φ < 2 0Φ >

Trimming curve 1

Trimming curve 2

Fig. 5 Adaptive hierarchical refinement approach for an element
where multiple zero-level set boundaries cross

ment is an element where the LSF values of all the vertices
are less than zero (Fig. 4a), and a solid element is an element
where the LSF values of all the vertices are greater than zero
(Fig. 4e), and trimmed elements are classified into three types
in terms of the number of vertices with a positive LSF value
(Fig. 4b–d). In the case that multiple zero-level set bound-
aries cross an element, an adaptive hierarchical refinement
approach as Fig. 5may be used to refine the element into sub-
elements that belongs to the five types in Fig. 4. Note that
the zero-level set boundary may be regarded as a trimming
curve that trims the element into solid and empty regions.

If the sign of the LSF values are different at the vertices
of an element edge, linear interpolation is used to find the
zero-level set point on that edge (see the purple points in
Fig. 4b–d), and then the line connecting the two zero-level
set points approximates the trimming curve. All the zero-
level set boundaries are found after implementing the above
linear interpolation for all the trimmed elements.

For the trimmed elements, the area (Φ > 0) is computed
by evaluating the triangular or trapezoidal area (approxi-
mated solid area in Fig. 4b–d) in the parametric space and
mapping it to the physical space. When the trimming curve
is not straight, this area is not exactly equal to the actual area
(Φ > 0). When the mesh is sufficiently refined, however,
the element area error is very small, and since the trimmed
elements are only a small fraction of the total, the total area
error may be ignored.

4.3 Isogeometric analysis

Theminimumcompliancedesignof 2D linear elasticity prob-
lems is solved by the isogeometric TO method. The discrete
equilibrium equation may be written as [29]

Ku = f , (36)

in which K is the stiffness matrix, u is the displacement
vector and f is the external force vector associated with the
control points. The stiffness matrix K consists of the element
stiffness matrix Ke that is written as

Ke =
∫

Ωe

BT DBdΩ

=
∫

Ω̂e

BT DB|J1|dΩ̂

=
∫

Ωe

BT DB|J1||J2|dΩ (37)

where B is the strain-displacement matrix and D is the
stress–strain matrix, Ωe is the domain of the element, Ω̂e

is the corresponding domain in the NURBS parametric
space {ξ, η}, and Ωe is integration domain in the integra-
tion parametric space {ξ, η}. Jacobian J1 and J2 indicate the
transformation relation from the NURBS parametric space
to the physical space and the integration parametric space to
the NURBS parametric space, respectively.

For 2D plane stress problems, the strain-displacement
matrix B is written as

B =
⎡
⎢⎣

∂N1
∂x 0 · · · ∂Nne

∂x 0
0 ∂N1

∂y · · · 0 ∂Nne
∂y

∂N1
∂y

∂N1
∂x · · · ∂Nne

∂y
∂Nne
∂x

⎤
⎥⎦ , (38)

and[
∂Ni
∂x

∂Ni
∂y

]
=

[
∂Ni
∂ξ

∂Ni
∂η

]
J1−1, (39)

where Ni is a basis function of the NURBS surface and the
Jacobian J1 is

J1 =
[

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
. (40)

The stress–strain matrix D is

D = E

1 − ν2

⎡
⎣1 ν 0

ν 1 0
0 0 1−ν

2

⎤
⎦ , (41)

where E is elastic modulus and ν is Poisson’s ratio.
The linear transformation from the Gauss quadrature

domain to the NURBS parametric domain [ξi , ξi+1) ×
[η j , η j+1) is given by

{
ξ = ξi+1−ξi

2 (ξ − 1) + ξi ,

η = η j+1−η j
2 (η − 1) + η j .

(42)

Therefore, the Jacobian J2 may be written as

J2 =
[

∂ξ

∂ξ

∂η

∂ξ
∂ξ
∂η

∂η
∂η

]
=

[
ξi+1−ξi

2 0
0 ηi+1−ηi

2

]
. (43)

Since the elements are fixedwithout remeshing in the opti-
mization procedure, in order to ensure the equation system
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is nonsingular, the density based FEM [4,9,61], known as
“ersatz material” approach, is employed. In this approach,
the void domain is filled with a weak material having a very
small elastic modulus Ew, where Ew < 0.001Es in general.
The material filling density is

ρ(Φ) = (Es − Ew)H(Φ) + Ew

Es
, (44)

where H(Φ) is the Heaviside function as Eq. (19).
When this density-based FEM is used in the numerical

implementation, the element stiffness matrix is

K ′
e =

∫
Ωe

BT DB|J1||J2|ρ(Φ)dΩ = Ke · ρe, (45)

where Ke is the stiffness matrix of a completely solid ele-
ment defined in Eq. (37), and ρe is material filling density of
element e.

4.4 Implementation

The implementation of the isogeometric parameterized
LSM-based TO is summarized in Fig. 6. The primary dif-
ferences from the conventional parameterized LSM-based
TO using the FEM are associated with the patch refinement
and the objective function computation as discussed in the
previous sections.

Each iteration starts with the design from the previous
iteration. To construct an initial design for the first iteration,
holes are introduced into the design domain. If the number
of initial holes is too small to describe all admissible shapes,
the optimal result may not be obtained by using the boundary
integration scheme [39] to evaluate the design sensitivities.
Even though the domain integration schemeEq. (26) and (27)
is used, too few holes may be unavailable to obtain the opti-
mal result when the terminal criterion is satisfied as discussed
in Sect. 5.1.1. Different hole initializations may also lead to
different convergence rates. Therefore, equally spaced holes
are usually introduced into the initial domain to efficiently
obtain the optimal results [39,62].

5 Numerical examples

Numerical examples of minimal compliance design prob-
lems are presented to demonstrate the characteristics of
the isogeometric LSM-based TO. The domain integration
scheme defined by Eqs. (26) and (27) is used to evaluate the
design sensitivities. All the examples are run on a desktop:
the CPU is an Intel core i7 960 3.2GHz, the RAM is 12GB,
the OS is Linux Ubuntu 12.04, and the software environment
is MATLAB 2014b. The 3× 3 Gauss quadrature rule is used

for the quadratic isogeometric elements used in the exam-
ples. In the “ersatz material” approach, the elastic modulus
for the solidmaterial is 1.0 and for the weakmaterial, 0.0001.
The Poisson’s ratio is 0.3. The terminal criterion is the rela-
tive difference of the objective function values between two
iterations, which is set to 0.0001.

5.1 Cantilever beam

The cantilever beam, as a benchmark problem, is commonly
used to evaluate TO methods [3,37–39,54,70]. The design
domain of the cantilever beam is shown in Fig. 7a. The left
side is fixed and a concentrated force is vertically loaded
at the center point of the right side. The volume ratio, i.e.,
material usage ratio, is limited to 0.5 and the distribution of
initial holes is shown in Fig. 7b, which are same as that used
by other researchers[38,39].

5.1.1 Influence of the initial hole distribution

In the LSM-based TO, the initial holes can split to formmul-
tiple holes, or merge with other holes to form a single one,
and their boundaries define the geometry of the TO result.
Therefore, the distribution of the initial holes may influence
the convergence rate and the geometric shape of the result.
For this example, we refine the design domain (Fig. 7a) into
a mesh of 64 × 32 quadratic 2D NURBS elements, and the
influence of initial holes is explored by using different initial
hole distributions as shown in Fig. 8. The radius of all the
holes is 0.1.

When the mesh of 64× 32 quadratic elements is used, no
control point is located at the center point of the right edge
(see the example in Fig. 11), so the force cannot be exactly
added at a control point. An approach to address this prob-
lem is as follows: (1) find the parametric coordinates of the
point where the force is added, e.g. (ξ, η), (2) evaluate all of
the basis functions NA(ξ, η), A = 1, ..., n at the parametric
coordinates, and (3) add the force NA(ξ, η)F at each corre-
sponding control point. This approach will be applied in the
following examples when the load cannot be added exactly.

The number of iterations and the TO results corresponding
to Fig. 8 are shown in Fig. 9. From Fig. 9a, b and c, it can be
observed that the proposed method is able to automatically
nucleate new holes in the material domain, and the number
of iterations decreases when an initial hole approaches the
loading position since the geometric changes prefer to occur
along the boundaries. When the design domain is initialized
with a certain number of holes and their distribution is reason-
able (Fig. 9d–f), the widely accepted optimal solution [4,39]
is obtained, but the number of initial holes influences the
convergence speed as shown in Fig. 8f > Fig. 8e > Fig. 8d.
The equal-interval hole distribution, applied throughout the
domain, performs the best, which is in agreement with other
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Fig. 6 The procedure flowchart
of the isogeometric
parameterized LSM-based TO
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Fig. 7 Design domain and
initial holes of the cantilever
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distribution of initial holes
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Different distribution schemes of initial holes: a 1 left hole, b
1 center hole, c 1 right holes, d 3 horizontal holes, e 4 × 2 holes and f
17 equal-interval holes

Number of iterations = 85 Number of iterations = 80

(a) (b)

(d)

Number of iterations = 63Number of iterations = 62

(c)

(e)

Number of iterations = 37 Number of iterations = 29

(f)

Fig. 9 The TO results of different initial holes in Fig. 8: a 1 left hole,
b 1 center hole, c 1 right holes, d 3 horizontal holes, e 4 × 2 holes and
f 17 equal-interval holes

researchers [4,38,39]. Comparing Fig. 9a–c with d–f, one
initial hole is not sufficient to obtain the optimal structure
when the terminal criterion is satisfied. Note that one initial

hole may produce the optimal structure if a smaller termi-
nal criterion is set, but it will greatly increase the number of
iterations.

5.1.2 IGA versus FEM

Compared to the conventional FEM, one of the biggest
advantages of IGA is its high efficiency of its high-order
elements. As shown in Fig. 2, the number of DOFs of IGA
scheme is much less than that of the FEM.When the number
of elements (e1 × e2) is known, the DOFs of IGA (NIGA)
and the FEM (NFEM ) using quadratic elements are

NIGA = 2(e1 + 2)(e2 + 2), (46)

and

NFEM = 2(2e1 + 1)(2e2 + 1). (47)

When e1 and e2 are large enough, the ratio NIGA/NFEM is
approximately 1/4.

Meshes of 16×8, 32×16, 64×32, 128×64 and 256×128
quadratic elements are used with IGA and the FEM to com-
pare the TO results. Figure 10 shows the optimization results
with different meshes, where N.A. is “not available” when
the terminal criterion could not be satisfied after hundreds
of iterations. When the mesh is too coarse, e.g., 16 × 8 and
32×16, the elements cannot represent the optimal structure,
and therefore rough, non-optimal structures are obtained (see
Fig. 10a–d).

The number of iterations increases with the mesh refine-
ment, and the number of iterations for IGA is smaller than
for the FEM. The primary reason for this is that the number
of iterations is a function of the number of DOFs and that
number is much smaller for IGA than the FEM for the same
mesh (Fig. 2).

In order to discuss the efficiency of IGA and the FEM
(using Lagrange elements) in detail, the computational time
of one iteration is given in Table 1. The rate of NIGA/NFEM

is approximately 1/4, which confirms the estimates from
Eqs. (46) and (47). The speedup of IGA/FEM ranges from
3.04 to 4.13, demonstrating the high efficiency of the pro-
posed isogeometric TO. Note that the computational time
and the number of DOFs are not proportional since the com-
putational costs of the FEM and IGA is not linear with the
DOFs, and some computations in the iteration are indepen-
dent of the FEM or IGA.

5.2 Michell type structure

Another benchmark example used to evaluate the result of
TO is the Michell structure problem, which is described in
detail in [38,63,66,70]. In Fig. 12a, the Michell structure is
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Number of iterations = N.A.

(a)

Number of iterations = 13

(b)

Number of iterations = 33 Number of iterations = 20

(c) (d)

(e)

Number of iterations = 33

(f)

Number of iterations = 29

(g)

Number of iterations = 66 Number of iterations = 41

(h)

Number of iterations = 118

(i)

Number of iterations = 72

(j)

Fig. 10 The TO results of the FEM and IGA with different meshes: a
FEM with mesh 16 × 8, b IGA with mesh 16 × 8, c FEM with mesh
32 × 16, d IGA with mesh 32 × 16, e FEM with mesh 64 × 32, f IGA
with mesh 64 × 32, g FEM with mesh 128 × 64, h IGA with mesh
128×64, i FEMwith mesh 256×128 and j IGA with mesh 256×128

subject to a vertical force at the middle of the bottom side.
A fixed constraint is applied at the bottom-left corner and a
roller constraint at the bottom-right corner. Amesh of 64×32
quadratic elements is used, and the volume ratio is set to 0.45
which is the same as that in [38].

Some selected iterations of the optimization solution are
shown in Fig. 12. The structure changes rapidly during the
initial iterations (Fig. 12a–c), and after the major structural
features are formed (as Fig. 12d), most of the iterations will
be spent in the adjustment of geometric details until the opti-
mal structure is obtained (see Fig. 12d–f). The final result

d
d

Control point

Objective loading point

Fig. 11 An example of the inaccurate loading problem

Table 1 Efficiency comparison between IGA and the FEMby the com-
putational time of one iteration

Cases NFEM NIGA FEM time IGA time Speedups
(s) (s) (IGA/FEM)

16 × 8 1122 360 0.62 0.20 3.10

32 × 16 4290 1224 2.62 0.83 3.16

64 × 32 18,354 4488 13.30 4.11 3.23

128 × 64 69,426 17,160 101.88 33.50 3.04

256 × 128 269,874 67,080 1489.36 360.22 4.13

is almost the same as that in reference [38] and the spokes
are more uniform, which demonstrates the validity of the
proposed isogeometric TO method in this paper (Fig. 13).

The objective function and the volume ratio over the iter-
ations are shown in Fig. 14. The objective function value is
very large during the initial iterations. This is a consequence
of using the using the “ersatz material” approach for this
problem. The bottom-left and bottom-right corners of the
design domain (where the constraints are added) is initial-
ized with the weak material (initial holes), resulting in large
displacements and a large strain energy. The holes at the
corners are rapidly filled with solid material and the objec-
tive function value decreases to normal (see the structure in
Fig. 12c), which does not influence the final optimization
results.

5.3 Quarter annulus

The proposed TO method is used to optimize a quarter
annulus with inner radius Rin = 1.00 and outer radius
Rout = 2.00 as shown in Fig. 15a. The bottom edge is fixed
and a concentrated force is horizontally loaded at left-top
corner. The volume ratio is set to 0.5. The equal-interval ini-
tial holes are distributed in the design domain as shown in
Fig. 15b.

A mesh of 64 × 64 elements is for design domain during
the TO of the quarter annulus, and different stages of the opti-
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Fig. 12 The design domain and
the initial holes of the Michell
type structure: a design domain
and b distribution of initial holes

R=0.1

2

F=1

1

(a) (b)

Fig. 13 Optimization stages of
the Michell type structure: a
initial design, b stage 2, c stage
4, d stage 10, e stage 20 and f
stage 46 (Final result)
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Fig. 14 Convergent histories of the Michell type structure

mization process are shown in Fig. 16. The structure evolves
in a manner similar to the Michell problem shown in Fig. 13:
the structure changes rapidly during the initial iterations and
most of the later iterations adjust the geometric details. Note
that no spatial discretization error exists here although some
boundaries of the design domain are curves. The objective
function and the volume ratio over the iterations are given in
Fig. 17.

Similar to Fig. 14, the objective function values are very
large at the beginning of the optimization (see Fig. 17), but
the reason for this is that the force, and not a constraint, is
applied at a point inside the initial hole (see the left-top cor-

ner in Fig. 16a), which results in a large strain energy. During
the TO, the left-top corner is rapidly filled with solid mater-
ial in stage 2 (see Fig. 16b) and the objective function value
decreases to a normal value, and we take this objective func-
tion value 138.84 as a reference. The objective function value
decreases from 138.84 to 72.00 after 144 iterations demon-
strating the rapid convergence of the proposed method. The
objective functions of iteration 10 and 70 are 84.29 and 73.33,
respectively. The percentage decrease of the objective func-
tion of iterations 1–10, 11–70 and 71–144 are 81.6, 16.4 and
2.0 %, respectively, which demonstrates that the geometry
of the structure changes rapidly at the beginning and then
slows.

6 Conclusions

With the conventional FEM-based TO, higher order elements
have high accuracy and rapid convergence, but their cost
is high. Topology optimization with higher order elements
has therefore not been with industry despite its theoreti-
cal attractions. IGA, which directly uses exact geometry in
the analysis, avoids the spatial discretization error of the
conventional FEM, and greatly improves the efficiency of
computation with high-order elements [28]. Therefore, using
IGA to replace the conventional FEM in the TOmay be a key
ingredient for TO with high efficiency and accuracy.

In this paper, IGA is first introduced into the parameterized
LSM-based TO, and the proposed isogeometric LSM-based
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Fig. 15 Design domain and
initial holes of the quarter
annulus: a design domain and b
distribution of initial holes

F=1

O
Rin=

1

R ou
t =
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(a) (b)

R=0.1

Fig. 16 Optimization stages of the quarter annulus: a initial design, b stage 2, c stage 4, d stage 10, e stage 20, f stage 30, g stage 40, h stage 70,
i stage 90, j stage 100 and f stage 144 (Final result)

TO has the advantages of both the parameterized LSM and
IGA. A collocation point scheme based on Greville abscis-
sae is proposed for the LSF construction, and an interpolation
point scheme using the vertices of the spans is adopted for
the area computation and the visualization. Both the LSF
parameterization and the isogeometric computation are using
the same NURBS basis functions. Besides that, the isoge-
ometric computation using the “ersatz material” approach
is presented so that the mesh regeneration is successfully
avoided.

Through the benchmark numerical example of the can-
tilever beam, we analyzed the influence of the initial holes,
and verified the high efficiency of the isogeometric parame-

terized LSM-based TO by comparing it to the conventional
parameterized LSM-based TO. A Michell structure exam-
ple was used to further demonstrate the effectiveness of the
proposed method. Moreover, a quarter annulus example with
curve boundaries demonstrates that the proposed isogeomet-
ric TOmethod can directly use the exact CADmodel without
spatial discretization error.

Future research will focus on better methods for imposing
Dirichlet boundary conditions, e.g. Nitsche’s method [22],
to deal with the inaccurate loading problems, and improved
quadrature for IGA [30] for higher efficiency and accuracy.
To further improve the accuracy, optimal quadrature for arbi-
trary shapes and topology [44]may replace the density-based
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Fig. 17 Convergent histories of the quarter annulus

approach in the stiffness matrix computation of the elements
trimmed by the zero level set. Moreover, expanding the pro-
posed TO method to 3D problems is also a high research
priority.
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