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Abstract In this paper, an approach based on the fast
point-in-polygon (PIP) algorithm and trimmed elements is
proposed for isogeometric topology optimization (TO)
with arbitrary geometric constraints. The isogeometric
parameterized level-set-based TO method, which directly
uses the non-uniform rational basis splines (NURBS) for
both level set function (LSF) parameterization and
objective function calculation, provides higher accuracy
and efficiency than previous methods. The integration of
trimmed elements is completed by the efficient quadrature
rule that can design the quadrature points and weights for
arbitrary geometric shape. Numerical examples demon-
strate the efficiency and flexibility of the method.

Keywords isogeometric analysis, topology optimization,
level set method, arbitrary geometric constraint, trimmed
element

1 Introduction

Topology optimization (TO) calculates the optimal dis-
tribution of material within a design domain in a manner
that maximizes the performance subject to constraints on
the amount of material, the stress within the material,
deflections, and et cetera. One important class of
constraints are the geometrical constraints that impose
the requirement that material must be present in certain
regions of the design domain. These geometric constraints
always exist in TO problems, e.g., manufacturing

constraints in structural TO design [1–3]. A typical
example of geometric constraints is a design that must
meet the requirements of assembled parts, such as Fig. 1,
where a gear-shape hollow domain needs to be retained in
the TO for assembling a gear. To ensure that material of a
certain thickness around the gear is retained, a gear-shape
ring is defined as the geometric constraint that should be
remained unchanged, and a mathematical description of
the geometric constraint is required to identify the
constraint domain in the TO.
The focus of the research here is the simple, accurate,

efficient solution of TO problems with a specific focus on
imposing the geometric constraints. Although the metho-
dology presented here is applicable to a broad range of
objective functions, the example calculations focus on the
minimum compliance design problem [4] that may be
defined mathematically as

Minimize : J ðu,ΦÞ ¼ !
Ω
εTðuÞEεðuÞHðΦÞdΩ,

Subject  to : V ðΩÞ ¼ !
Ω
HðΦÞdΩ£Vmax,

(1)

where HðΦÞ is the Heaviside function [5] defined as

HðΦÞ ¼ 1, if Φ³0,

0, if Φ<0,

(
(2)

where, J ðu,ΦÞ is objective function, E is elasticity tensor
and ε is strain. The inequality V ðΩÞ£Vmax represents the
volume constraint. Note that the partial derivative of HðΦÞ
is the Dirac function δðΦÞ. In practice, HðΦÞ is usually
replaced by its regularized form as [6]

HΔ Φð Þ¼
1, if Φ > Δ,

3ð1 – αÞ
4

Φ
Δ
–
Φ3

3Δ3

� �
þ 1þ α

2
, if –Δ£Φ£Δ,

α, otherwise,

8>>><
>>>:

(3)

where Δ is a parameter describing the magnitude of
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regularization and α is a small positive number to ensure
the global stiffness matrix is nonsingular.

1.1 Related work

In the past three decades, especially since the work of
Bendsøe and Kikuchi [7] TO has been extensively studied
and has achieved remarkable progress in a wide range of
domains [8–12]. Many methods have been proposed in
recent years to solve TO problems, such as homogeniza-
tion methods [13,14], solid isotropic material with
penalization (SIMP) methods [15,16], evolutionary struc-
tural optimization (ESO) methods [17,18] and level set
methods (LSMs) [6,19,20]. In TO, it is of great importance
to introduce geometric constraints to satisfy some practical
requirements such as the gear assembly in Fig. 1. In
engineering practice, people have to manually divide the
design domain and the geometrically constrained domain,
and then use meshing algorithm to generate the meshes of
design domain and constrained domain, respectively.
Moreover, if the geometric constraint is complex with
small geometric features, the number of elements will
greatly increase and cost much more time in computation.
Therefore, a method that can apply arbitrary geometric
constraints without domain division is of great industrial
interest.
Many researchers have worked in the TO with geometric

constraints and proposed a series of approaches. Zuo et al.
[1] added manufacturing constraints, e.g., minimum hole
size and symmetry, to produce more practical designs by
combining the method of moving asymptotes and wave-
lets. Chen et al. [21,22] introduced R-functions into B-
spline parameterized level-set based TO to permit the
explicit parametric control of the geometry and topology
within a large space of free-form shapes. Luo et al. [23]
introduced a quadratic energy functional used in image
processing applications into the LSM to control the
geometric width of structural components in the mechan-
isms, which can lead to hinge-free compliant mechanisms
with distributed compliance by controlling structural shape
features. Recently, Liu et al. [24,25] used the parameter-
ized LSM with the compactly supported radial basis

functions (CS-RBF) and R-functions for a unified topology
and shape optimization method of a continuum structure
with geometric constrains, and later applied them to
eigenvalue TO. Liu and Ma [26] presented an explicit
feature-based level-set TO method, which relied on the
feature fitting algorithm and the feature-based shape
optimization to derive optimized machining feature-
based design, and the explicit feature primitives can be
automatically selected and inserted during the optimization
process. Xia and Shi [27] proposed a method to control the
minimum/maximum length scale in the level-set based TO
by using the concept of smallest/biggest maximal inscrib-
able ball. Guo et al. [28] presented an explicit structural TO
approach based on Moving Morphable Components, in
which the topology description function (TDF) is used to
describe the geometry of a structural component explicitly.
As a result, this method has a great potential to include
geometric constraints by controlling the TDF parameters.
However, the above geometric constraint methods only
consider simple geometries that can be easily parameter-
ized by their explicit geometric functions, since an explicit
function of an arbitrary geometric constraint is very
difficult to obtain.
In recent years, isogeometric analysis (IGA) [29,30],

that combines the framework of the finite element method
(FEM) [31] with the basis functions used in computer-
aided design (CAD), is being employed to replace
conventional FEM in TO problems due to its high
continuity, accuracy and efficiency. Seo et al. [32] first
proposed an isogeometric TO that used trimmed surface
[33] for structural response analysis and sensitivity
calculation. Kumar and Parthasarathy [34] used B-spline
finite elements in density based TO to obtain results that
were free from checkerboarding, where a penalization of
density gradient was used to smooth the density and obtain
a mesh-independent solution. Dedè et al. [35] used a
phase-field model for the formulation and solution of the
TO and used IGA for geometric exactness of the design
domain and for solution of phase field problems. Wang and
Benson [36] recently proposed a new isogeoemtric
parameterized level-set based TO that directly used non-
uniform rational basis splines (NURBS) basis functions to

Fig. 1 An example of geometric constraint in TO problems
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interpolate the level set function (LSF) and evaluate the
objective function, so that all the advantages of the
parameterized LSM and IGA are perfectly integrated.
Although using IGA in TO may achieve some

distinguished advantages, it is more difficult to implement
geometric constraints in isogeometric TO than that in FEM
TO, since the mesh of the NURBS-based IGA is based on
the tensor product patch that usually does not conform to
the geometrically constrained domain, especially for the
complex constrained domain. This problem also exists in
the IGA with unstructured meshes, such as IGA using T-
splines [37], PHT-splines [38] and Powell-Sabin splines
[39]. Using trimmed element techniques [33,40–42] may
solve this problem, but numerical integration for trimmed
elements are based on coordinate mapping approaches
which are only restricted to several simple trimming types
and reduce the accuracy. Nagy and Benson [43] proposed
an algorithm to construct efficient quadrature rules for
trimmed elements of arbitrary shape and topology, which
has been successfully used in multi-trimmed boundary
elements [44]. The integration rule is unique to a trimmed
element and it is optimal within the trimmed domain up to
a predefined tolerance.

1.2 Outline of current work

In this paper, we present an isogeometric parameterized
level-set based TO including arbitrary geometric con-
straints based on our previous work [36], where a point-in-
polygon (PIP) algorithm is used to identify the geome-
trically constrained domain and the quadrature rule design
method [43] is utilized to complete the integration of the
trimmed elements caused by the geometric constraints. The
remainder of this paper is organized as follows: In Section
2, the framework and properties of the proposed isogeo-
metric TO are summarized; Section 3 briefly reviews the
conventional parameterized level-set based TO; Section 4
introduces the parameterized level-set based isogeometric
TO that uses NURBS basis functions; Section 5 proposes a
strategy to implement arbitrary geometric constraints; the
solution of the TO method is described in Section 6;
numerical examples are given in Section 7 to demonstrate
its validity and efficiency; finally, conclusions and future
research are drawn in Section 8.

2 Summary of the proposed method

Among the desirable properties in a TO algorithm are
smooth boundaries, high efficiency, and CAD compat-
ibility. The parameterized level-set based TO [45,46] is an
ideal candidate to achieve these properties because of its
implicit description of the boundaries and the parameter-
ized design variables. Combining IGAwith the parameter-
ized level-set based TO in our previous work [36] avoids
the spatial discretization error found in the meshes of
conventional FEM, and provides computational efficiency
of higher-order elements. Therefore, it is used in the
current research.
Some geometric domains need to be kept unchanged

during the TO, e.g., the subdomain in Fig. 1 for the gear
assembly. In general, the constrained domain needs to be
manually divided and meshed for conventional finite
element methods as shown in Fig. 2(a), so that this domain
can be identified in the TO. However, this may greatly
increase the computational cost due to increased number of
elements compared to a regular mesh as shown in Fig. 2(b),
where the numbers of elements are 1610 and 800,
respectively in Figs. 2(a) and 2(b).
In the current research, the design and constrained

domains are embedded in a NURBS patch as shown in
Fig. 2(b), where some elements are trimmed by the
boundaries of the geometrically constrained domain. The
trimmed elements are integrated with the quadrature design
method [43] and a PIP algorithm is adopted to identify the
geometrically constrained domains.

3 An overview of the conventional
parameterized LSM

3.1 The level-set model for shape representation

The level set method (LSM) was first proposed by Osher
and Sethian [47] to track the evolution of free surfaces in
computational fluid dynamics, and has proven to be
effective in representing complicated boundaries in a wide
variety of applications. In LSM, the material boundary ∂Ω
is implicitly embedded as the zero level set of a one-
dimensional-higher LSF Φðx,tÞ, where t is a pseudo time.

Fig. 2 Two mesh schemes for the example in Fig. 1. (a) Meshes by conventional finite element methods; (b) regular mesh
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The LSFΦðx,tÞ is defined over a reference domainD � Rd

(d = 2 or 3) (an example of a 2D design domain is given in
Fig. 3) such that:

Φðx,tÞ > 0, 8x 2 Ωn∂Ω ðinsideÞ,
Φðx,tÞ ¼ 0, 8x 2 ∂Ω \ D ðboundaryÞ,
Φðx,tÞ<0, 8x 2 DnΩ ðoutsideÞ,

8><
>: (4)

Differencing the LSF Φðx,tÞ with respect to the pseudo
time t, the Hamilton-Jacobi equation is obtained as [6]

∂Φðx,tÞ
∂t

– vnjrΦj ¼ 0, Φ x,0ð Þ ¼ Φ0 xð Þ, (5)

where the normal velocity vn is

vn ¼ –
dx
dt

$
rΦ
jrΦj: (6)

The partial differential equation (PDE) in Eq. (5) on a
fixed Eulerian grid is solved numerically [48], subject to
the Courant-Friedrichs-Lewy (CFL) condition [49]. The
velocity extension and reinitialization should be handled
carefully, and the element mesh size must be fine enough to
guarantee the convergence of the numerical process [25].

3.2 CS-RBF based parameterized LSM

Different interpolation functions may be used for this
parameterization, for example, the linear B-spline basis
function used by Chen et al. [21,22], the globally
supported RBFs used by Wang et al. [4] and the CS-
RBFs used by Luo et al. [45,50]. The CS-RBF based
parameterized LSM, a popular method due to its efficiency
and accuracy, is briefly introduced here.
The frequently used CS-RBF with C2 smoothness is

expressed as [51]

φiðrÞ ¼ ð1 – rÞ2þð4r þ 1Þ, (7)

where radius of support r is scaling distance from the point

(x, y) to the knot (xi, yi), which is

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx – xiÞ2 þ ðy – yiÞ2

q
d

, (8)

and d is a scaling parameter factor which is chosen 2–4
times of the mesh size [45].
When CS-RBFs are used, the scalar LSF can be

interpolated at the knots as

Φðx,tÞ ¼ φðxÞTαðtÞ ¼
Xn
i¼1

φiðxÞαiðtÞ, (9)

where n is the number of prescribed knots distributed in the
embedding domain Ω, and φðxÞ ¼ ½φ1ðxÞ,φ2ðxÞ,:::,φnðxÞ�T
is the shape function vector that is only associated with
space, and αðtÞ ¼ ½α1ðtÞ,α2ðtÞ,:::,αnðtÞ�T is the expansion
coefficient vector that is only associated with time.
Substituting Eq. (9) to Eq. (5), the space and time of the

Hamilton-Jacobi PDE are separated and the PDE is
rewritten as

φðxÞTdαðtÞ
dt

– vnjðrφðxÞÞTαðtÞj ¼ 0, (10)

where the normal velocity vn is

vn ¼
φðxÞT

jðrφðxÞÞTαðtÞj$
dαðtÞ
dt

, (11)

and therefore the original level-set TO has been converted
into a parameterized level-set TO. By converting the PDE
Eq. (5) into the ordinary differential equation (ODE)
Eq. (10), numerical programming algorithms can be used
to solve the level-set based design problem and avoid
directly solving the Hamilton-Jacobi PDE, which will
greatly improve the computational efficiency.

4 NURBS based parameterized LSM

In conventional parameterized LSMs, e.g., the CS-RBF
based parameterized LSM in Section 3, the knots (a set of
grid points in the design domain) are chosen as interpola-
tion points to parameterize the LSF of the design domain.
However, these methods are not suitable for isogeometric
analysis because the control points are not necessarily in
the design domain. In order to use control points to
interpolate the LSF of the design domain, a new
parameterized method based on NURBS basis functions
is presented in Ref. [36], which is summarized in this
section.

4.1 NURBS basis functions

Non-uniform rational B-splines (NURBS) [52], con-
structed from B-splines, are the standard tools for curve

Fig. 3 A 2D design domain and LSM
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and surface representation in CAD systems. A knot vector,
Ξ ¼ f�1,�2,:::,�nþpþ1g, is a sequence of non-decreasing
real numbers in the parametric space, where n is the
number of control points and p is the order of the spline
curve. The interval ½�1,�nþpþ1Þ is called a patch and the
knot interval ½�1,�iþ1Þ is called a span.
Given a knot vector, the B-spline basis functions are

recursively defined following the Cox-de Boor formula
[53]:

Bi,0ð�Þ ¼
1, if �i£�<�iþ1,

0, otherwise,

(

Bi,p �ð Þ ¼ � – �i
�iþp – �i

Bi,p – 1 �ð Þ þ �iþpþ1 – �

�iþpþ1 – �iþ1
Biþ1,p – 1 �ð Þ,

ðp≠0Þ:
(12)

Some of the important properties of B-spline basis
functions are
1) Nonnegativity: Bi,pð�Þ³0;

2) Partition of unity:
Xn

i¼1
Bi,pð�Þ ¼ 1;

3) Local support: The B-spline basis function Bi,pð�Þ is
non-zero only in its support interval ½�i,�iþpþ1Þ;
4) Differentiability: Bi,pð�Þ is p – k times differentiable

where k is the multiplicity of the knots.
NURBS basis functions are obtained from B-splines by

assigning a positive weight wi to each basis function,

Ni,p �ð Þ ¼ Bi,pð�ÞwiXn

j¼1
Bj,pð�Þwj

: (13)

In terms of the tensor product formulation, two
dimensional NURBS basis functions are constructed as

Nj,q
i,p �,ηð Þ ¼ Bi,pð�ÞBj,qðηÞwi,jXn

k¼1

Xm

l¼1
Bk,pð�ÞBl,qðηÞwk,l

, (14)

where wi,j is the weight value corresponding to the tensor
product Bi,pð�ÞBj,qð�Þ.
A NURBS surface of order p in � direction and order q in

η direction is a bivariate piecewise rational function of the
form

Sð�,ηÞ ¼
Xn
i¼1

Xm
j¼1

Nj,q
i,p ð�,ηÞPi,j, (15)

where Pi,j are the control points. In IGA, the same basis
functions are used for both shape representation and
physical field approximation.

4.2 NURBS interpolation for LSF

To use control points to interpolate the LSF of the design
domain, a parameterized method based on NURBS basis

functions is proposed in Ref. [36]. This method is similar
to the lifting operator used for calculating the normals for
isogeometric shells [54,55].
Using a 1D problem as an example, Eq. (9) may be

written as

Φðx,tÞ ¼ Φðxð�Þ,tÞ ¼
X
i

Nið�ÞαiðtÞ, (16)

where � is the parametric coordinate and Ni is the NURBS
basis function. Note that no parametric coordinates exist in
the RBFs or CS-RBF based parameterization methods
where the physical coordinates are directly used.
When the geometry of the initial design domain is

known, the initial LSF as Φðx,0Þ is known. In order
evaluate the initial expansion coefficients of control points
as αiðtÞ, i = 1,...,n, n collocation points need to be
distributed in the initial design domain to set up the
equations as Eq. (16). One common and effective
collocation method uses the Greville abscissae [56]

�i ¼
1

p
�iþ1 þ �iþ2 þ ,:::,þ �iþp

� �
, i ¼ 1,2,:::,n, (17)

where �i is the ith knot of the knot vector
Ξ ¼ f�1,�2,:::,�nþpþ1g.
For 2D problem (NURBS surface), two Greville

abscissae representing the coordinates in � and η
coordinates are evaluated respectively, and coordinates
and basis functions are generalized to xð�,ηÞ and Nið�,ηÞ,
respectively. The physical coordinates of the collocation
points are evaluated by Eq. (15), and then the LSF values at
the collocation points are obtained by the LSF. An example
of collocation points in a bi-quadratic surface is shown in
Fig. 4, where it is easy to find that each collocation point
has its corresponding control point but their locations may
be different.

Ξ ¼ f0,0,0,1,1,1g and Η ¼ f0,0,0,1,1,1g
Using Eq. (16) at all the collocation points yields

equations to construct a linear equation system as

Φ ¼ Aα, (18)

Fig. 4 An example of the Greville abscissae collocation for the
surface formed from knot vectors
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where Φ is a vector consisting of initial LSF values at all
collocation points, A is a matrix consisting of the NURBS
basis functions corresponding to the collocation points,
and α is a vector of expansion coefficients at control points
that is obtained by solving the above equations

α ¼ A – 1Φ: (19)

In the TO procedure, only the expansion coefficients are
updated in the iterations (A will not change), and the new
LSF values are evaluated by Eq. (18).

5 Implementation of arbitrary geometric
constraints

Most of the previous research on TO with geometric
constraints are focused on R-functions [21,24,25,57] that
are capable of combining primitive LSFs to construct
complex geometric shapes. However, this approach only
works well for regular geometric shapes that have
analytical representations (e.g., circle, rectangle and
ellipse). In practice, if the geometrically constrained
domain can be identified explicitly, we can embed the
domain into a NURBS patch and only use the elements
belonging to the domain in the isogeometric TO. If a
subdomain of the design domain needs to be retained, we
can set the expansion coefficients to always be positive in
the subdomain as in the tolerance zone method [21,24].
A new identification method for geometrically con-

strained domains is described in this section that is based
on a PIP algorithm that can be used for arbitrary two- and
three-dimensional geometries, although our current imple-
mentation is restricted to two dimensions. The PIP
algorithm is presented in Section 5.1. With the help of
the PIP algorithm, the TO may be implemented in regular
mesh with trimmed elements as Fig. 2(b), and the
integration of trimmed elements is briefly reviewed in
Section 5.2.

5.1 Point-in-polygon algorithm

The key issue of identifying a geometrically constrained
domain in TO is to identify whether a point is inside the
domain or not, which is actually a PIP problem. The PIP
problem is a common problem in computational geometry
that asks whether a given point in the plane lies inside,
outside, or on the boundary of a polygon. Although the
general approach remains valid in three dimensions, the
presentation here is restricted to the particular algorithms
implemented in two dimensions in the current research for
simplicity.
The ray casting algorithm [58,59], also known as the

crossing number algorithm, is a simple and efficient way of

finding whether a given point is inside or outside a
polygon. This algorithm tests how many times a ray,
starting from the point and going in any fixed direction,
intersects the edges of the polygon. Excluding the case that
the given point is just on the boundary of the polygon
(point-polygon distance is zero), it is outside if the number
of intersections is an even number, and it is inside if odd,
see Fig. 5.

MacMartin et al. [60] pointed out that for polygons with
a large number of edges only a few of these will straddle
any given latitude line (Y component of arbitrary point on
the line is the same). A fast PIP strategy is to loop through
just the Y components of two endpoints of each line
segment. When the Y component of the latitude line is
between the Y components of the endpoints, the X
components are checked to find if the latitude line and
the segment will intersect. Hanies [61] compared several
points in polygon strategies and concluded that the
MacMartin’s crossing test is one of the most efficient
methods needing no additional memory or preprocessing.
In this work, the MacMartin’s crossing test is modified to
determine if a point is within a polygon and compute the
point-polygon distance as follows:
Point-in-polygon algorithm
Step 1: Assume objective point P is outside the polygon

Γ by setting the point-polygon distance d to a big value
(e.g., 1016) and the point-polygon relation flag stat to ‒1.
Step 2: For each edge (line segment) l of polygon Γ do
If the+ X direction ray from P intersect edge l then
stat = ‒stat.
end if
Compute the distance d' between point P and edge l.
d = min(d,d').
If d = 0 then
stat = 1,
break.
end if
end for
Step 3: Return the point-polygon relation flag stat

(outside: stat = – 1; inside or on the edge: stat = 1) and the
point-polygon distance d.

Fig. 5 Ray crossing test: One crossing denotes P1 is inside and
two crossings denote P2 is outside
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5.2 Integration of the trimmed elements

Once the point-polygon relationship is obtained, we can
divide the elements in the whole domain into three types as
illustrated in Fig. 6: 1) Regular elements, 2) trimmed
elements, and 3) empty elements (i.e., fully trimmed
elements). Note that a trimmed element consists of two
parts, i.e., retained part and a removed part. By removing
the empty elements, we renumber the regular and trimmed
elements and use them in the computation. Since irregular
trimmed elements are introduced in the design domain, a
highly efficient integration method [43] is used for the
integration of the retained part of trimmed elements, which
is summarized here.

The NURBS basis functions are piecewise polynomials
constructed from a weighted sum of monomials,

NðξÞ ¼
Xm
i¼1

cifiðξÞ, (20)

where ξ ¼ ð�1,:::,�nÞ are the parametric coordinates in n
dimensions, and ci and fi are the ith coefficient and
monomial. The function space F for the tensor product
spline polynomials consists of the set of all monomials
�r1�

s
2 such that 0£ r, s£ p, where p is the degree of the

spline in one dimension.
For a given integration domain Ω 2 Rn, when a

predefined function space FðΩÞ is chosen, integration
rules are constructed by solving moment-fitting equations
for all functions fj 2 F, with j = 1,2,..., m as

!
Ω
f1ðξÞdξ

!
Ω
f2ðξÞdξ
M

!
Ω
fnðξÞdξ

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

f1ðξ1Þ f1ðξ2Þ � � � f1ðξmÞ
f2ðξ1Þ f2ðξ2Þ � � � f2ðξmÞ

M M M M

fnðξ1Þ fnðξ2Þ � � � fnðξmÞ

2
6666664

3
7777775

w1

w2

M

wm

0
BBBBB@

1
CCCCCA: (21)

If xi ¼ ð�1i ,�2i ,:::,�ni ,wiÞ is a vector consisting of the
parametric coordinates and the weight of the ith quadrature
point (i.e., design point), symbol x 2 Rmðnþ1Þ designates
the collection of quadrature points and corresponding
weights, i.e., x = {xi | i = 1,2,...,m}, which can be obtained
by solving Eq. (21).
The domain of a trimmed element is approximated as a

polytope in the parametric space. First, h-refinement is
applied to the trimming curves to improve the approxima-
tion quality of the control polygons (see Fig. 7). After that,

Fig. 6 An example of element classification

Fig. 7 An illustration for the approximation representation of the trimmed domain: Domain with (a) initial and (b) refined trimming
control polygon
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the domain of a trimmed element Ωe is defined by taking
the difference of the untrimmed knot span Ωe

0 and the
trimming polygons as

Ωe ¼ Ωe
0nð[ iPiÞ, (22)

where Pi is the ith closed control polygon in the parametric
space.
After the domain of a trimmed element is obtained as

Eq. (22), Lasserre’s theorems [62] are used to evaluate the
left hand side terms in Eq. (21), the reference values for the
integrals of the monomials. After distributing an initial set
of quadrature points and weights, a least squares method is
used to approximate the solution of Eq. (21). The
quadrature points in the minimum norm solution are
classified and the point with the lowest rank is eliminated.
This reduced set of points is used to reinitialize the non-
linear equation solver in the next iteration. The process
continues until the integration rule with the lowest number
of points is found that satisfies the moment fitting equation
up to a predefined tolerance. For more details of the
algorithm, the reader is referred to Ref. [43]. The
quadrature points and weights in physical space are
obtained by coordinate transformation, which will be
directly used in the computation without such transforma-
tion again.

6 Topology optimization for minimum
compliance with geometric constraints

6.1 Sensitivity analysis

The original constrained optimization problem Eq. (1) is
converted into an unconstrained problem by using
Lagrange multipliers

Lðu,ΦÞ ¼ J ðu,ΦÞ þ Λ !
Ω
HðΦÞdΩ –Vmax

� �
, (23)

where Λ is the Lagrange multiplier. The shape derivative
of Lagrangian function Lðu,ΦÞ in Eq. (23) is

∂Lðu,ΦÞ
∂t

¼ !
Ω
½Λ –FðuÞ�δ Φð ÞjrΦjvndΩ, (24)

where FðuÞ ¼ EijklεTijðuÞεklðuÞ.
Substituting the normal velocity field vn in Eq. (11) into

Eq. (24), the derivative of Lagrangian function may be
expressed as

∂Lðu,ΦÞ
∂t

¼ !
Ω
½Λ –F uð Þ �δ Φð ÞNT∂αðtÞ

∂t
dΩ

¼
Xm
i¼1

!
Ω
½Λ –F uð Þ�δ Φð ÞNi

∂αiðtÞ
∂t

dΩ

¼
Xm
i¼1

!
Ω
–FðuÞδðΦÞNi

∂αiðtÞ
∂t

dΩ

¼ þΛ
Xm
i¼1

!
Ω
δðΦÞNi

∂αiðtÞ
∂t

dΩ,
(25)

where αi is the ith design variable (i.e., expansion
coefficients of control points) and i = 1, 2, …, m where
m is the number of design variables.
Using the chain rule to the differentiate the Lagrangian

function Eq. (23), the shape derivative is rewritten as

∂Lðu,ΦÞ
∂t

¼
Xm
i¼1

∂J ðu,ΦÞ
∂αiðtÞ

∂αiðtÞ
∂t

þ Λ
Xm
i¼1

∂V ðΦÞ
∂αiðtÞ

∂αiðtÞ
∂t

: (26)

Comparing Eqs. (25) and (26), the design sensitivities
associating with expansion coefficients may be written
as

∂J ðu,ΦÞ
∂αiðtÞ

¼ !
Ω
–FðuÞδðΦÞNidΩ, (27)

∂V ðΦÞ
∂αiðtÞ

¼ !
Ω
δðΦÞNidΩ, (28)

where δðΦÞ may be defined as
1

π
γ

Φ2 þ γ2
and γ should be

chosen as 2–4 times as the element size based on the
numerical experiences in Ref. [46].
The design sensitivities associating with expansion

coefficients of the free boundary LSF may therefore be
written as

∂J ðu,ΦÞ
∂αiðtÞ

¼ !
Ω
– εT uð ÞEε uð Þδ Φð ÞNidΩ, (29)

∂V ðΦÞ
∂αiðtÞ

¼ !
Ω
δðΦÞNidΩ, (30)

where δðΦÞ is the delta function and Ni is the NURBS basis
function.

6.2 Element stiffness evaluation

For the minimum compliance design of linear elasticity
problems, the equilibrium equation may be written as [31]

Ku ¼ f , (31)

in which K is the stiffness matrix, u is the displacement
vector and f is the external force vector associated with the
control points. The stiffness matrix K consists of the
element stiffness matrix Ke,
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Ke ¼ !
Ωe

BTDBdΩ

¼ !
Ωe

BTDBjJ1jdΩ

¼ !
Ωe
BTDBjJ1jjJ2jdΩ, (32)

where B is the strain-displacement matrix and D is the
stress-strain matrix. Ωe is the domain of the element, Ωe is
the corresponding domain in the NURBS parametric space

f�,ηg, and Ωe is integration domain in the integration
parametric space f�,ηg where Gauss quadrature is used to
complete the integration. J1 and J2 are the Jacobians of the
NURBS parametric space to the physical space and the
integration parametric space to the NURBS parametric
space, respectively.
Since the elements are fixed in space for the optimization

procedure, the density based FEM [5,15,19], known as
“ersatz material” approach, is employed to avoid any
singularities. In this approach, the void domain is filled
with a weak material of a very small elastic modulus Ew. In
general, Ew< 0.001Es where Es is the elastic modulus of
the solid material, and the material filling density is given
by

�ðΦÞ ¼ Es½ð1 – τÞHðΦÞ þ τ�, (33)

where τ ¼ Ew=Es and HðΦÞ is the Heaviside function as
Eq. (2).
In practice, we need to evaluate the material filling

density �e for an element

�e ¼
Es!

Ωs

dΩþ Ew!
Ωw

dΩ

Es!
Ωe

dΩ
, (34)

where Ωs and Ωw are the solid and weak material domains
of element domain Ωe.
The key issue regarding the element filling density is the

efficient integration of solid and weak domains. The
element filling density �e is 1 or τ for the element
containing only the solid or weak material, respectively.
These elements are efficiently integrated using Gauss
quadrature, or if they are trimmed, by the integration rule
described previously in Section 5.2.
When an element contains both solid and weak

materials, the boundary cutting the element is approxi-
mated by polylines (see Fig. 8(a)), and each of the
integration domains Ωs and Ωw is divided into triangles by
connecting the centroid and vertices. The Hammer
quadrature method [63] is used for the integration of
each triangle (4-point quadrature rule is used in this paper,
see Fig. 8(b)). This probably results in more points being
used than are strictly necessary, but the integration cost for
this comparatively small set of elements is not a major

contributor to the overall TO cost.
The resulting element stiffness matrix is

K#e ¼ !
Ωe
BTDBjJ1jjJ2j�ðΦÞdΩ ¼ Ke$�e, (35)

where Ke is the stiffness matrix of full-solid element
defined in Eq. (32), and �e is material filling density of
element e.
When geometric constraints are introduced into the TO,

the trimmed elements caused by the geometric constraints
are usually required to remain unchanged. The stiffness
matrix of a trimmed element (retained part) is evaluated
by

K te ¼ !
Ωte

BTDBdΩte ¼
Xm
i¼1

wiB
T
i DiBi, (36)

where wi is the weight of the ith quadrature point, and Bi

and Di are the strain-displacement and stress-strain matrix
corresponding to the ith quadrature point. Note that the
quadrature points may be different for each trimmed
element and obtained by the quadrature-point design
method described in Section 5.2.

6.3 Update scheme

The optimality criteria (OC) method is efficient for the
optimization problems with a large number of design
variables and a few constraints [64], which is exactly the
case in continuous TO with a global material volume
constraint. Therefore, the OC method is chosen to update
the design variables.
The update scheme can be described as

Fig. 8 The element filling density computation for a boundary-
crossing element: (a) Polyline approximation of the boundary and
(b) the integration scheme

¯
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αðkþ1Þ
i ¼

max ð1 –mÞαðkÞi ,αmin

n o
, if ðDðkÞ

i Þ�αðkÞi £max ð1 –mÞαðkÞi ,αmin

n o
ðDðkÞ

i Þ�αðkÞi , if max ð1 –mÞαðkÞi ,αmin

n o
< ðDðkÞ

i Þ�αðkÞi <min ð1þ mÞαðkÞi ,αmax

n o
min ð1þ mÞαðkÞi ,αmax

n o
, if ðDðkÞ

i Þ�αðkÞi ³min ð1þ mÞαðkÞi ,αmax

n o

8>>>><
>>>>:

, (37)

where � (0 < � < 1) is the damping factor and m (0<m< 1)
is the move limit, which are set to 0.3 and 0.05 in this

paper, respectively, and DðkÞ
i is denoted as [50]

DðkÞ
i ¼ –

∂Jðu,ΦÞ
∂αðkÞi

=max �,ΛðkÞ∂V ðΦÞ
∂αðkÞi

 !
, (38)

where a very small positive constant � is introduced to
avoid the zero term as the denominator, and Lagrange
multiplier ΛðkÞ is calculated by Ridders’ method as that in
Ref. [36].
After the completion of the update, the new objective

function value Jnew is computed. When the relative
difference of the objective function value between two
iterations is less than a prescribed small number such as
0.0001, the iterative solution can be stopped and the
optimal result is obtained. Otherwise the new sensitivities
associated with Jnew will be computed, and the whole
update procedure will be implemented again to obtain the
new design variables.

7 Numerical examples

Numerical examples of minimal compliance design
problems demonstrate the isogeometric level-set based
TO with geometric constraints. All the examples are run on
a laptop: The CPU is Intel core i7-3630QM 2.4 GHz, the
RAM is 4 GB, the OS is Windows 7, and the software
environment is MATLAB 2012b. In the “ersatz material”
approach, the elastic moduli for the solid and weak
material are 1.0 and 0.0001, respectively. The 3�3 Gauss
quadrature rule is used for the quadratic isogeometric
elements with single material, and the 4-point Hammer
quadrature rule is used for the multiple material elements

as shown in Fig. 8. The Poisson’s ratio is 0.3. The terminal
criterion that the relative difference of the objective
function values between two iterations is set to 0.0001.

7.1 Michell type structure

The Michell type structure problem is a commonly used
benchmark for evaluating TO methods [4,17,46,65,]. This
example adds a geometric constraint as shown in Fig. 9(a).
The interior of the gear domain is removed while the
boundary with a thickness of 0.08 is preserved. The initial
holes are distributed as Fig. 9(b). The structure is subject to
a vertical force at the middle of the bottom side. A fixed
constraint is applied at the bottom-left corner and a roller
constraint at the bottom-right corner. A mesh of 128�64
quadratic elements is used, and the volume ratio is set to
0.45.
Selected intermediate solutions are shown in Fig. 10.

The structure changes rapidly during the initial iterations
(Figs. 10(a)–10(c)), but most of the iterations are spent in
the adjustment of the geometric details until the terminal
criterion is satisfied (see Figs. 10(d)–10(f)). The objective
function and the volume ratio during the iterations are
shown in Fig. 11. The objective function value is very large
during the first iterations. The reason for this is that the
“ersatz material” approach is used and the displacement
constraints are imposed with the weak material (see initial
holes in Fig. 9(b)), which results in large displacements
and a large strain energy at the beginning. As the structure
evolves during the optimization, the hole where the force is
applied is rapidly filled with solid material so that the
objective function value decreases to normal (see Fig. 10
(b)). After that, the objective function gradually decreases
until the terminal criterion is satisfied.
The result of a classical Michell type problem was

Fig. 9 The Michell type structure with a geometric constraint: (a) Design domain and (b) distribution of initial holes

¯

¯

¯ ¯

¯

¯

¯
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shown in our previous work [36] as Fig. 12. Comparing to
Fig. 10(f), the resulting optimal structures are obviously
different, confirming that the geometric constraint influ-
ences the optimization result. The objective function value
of the final result for the one with geometric constraint is
17.294, and for the one without geometric constraint is
14.65. It demonstrates that a suboptimal result is obtained
when the geometric constraint is added but this suboptimal
result is the optimal one under the geometric constraint.

7.2 Spanner wrench structure

The spanner wrench illustrates the ability of the proposed
method to handle arbitrary geometric constraints. As
shown in Fig. 13(a), a vertical force is applied at the
middle of the right edge. The spanner is embedded into a
NURBS patch consisting of 192�96 quadratic 2D
NURBS elements, and the equal-interval initial holes are
distributed throughout the domain as shown in Fig. 13(b).
The volume ratio is set to 0.3.
In this example, the PIP algorithm described in Section

5.2 is used to identify the profile of the spanner. Note that
the PIP algorithm needs to be used twice in this example to
identify the exterior and interior boundaries of the
geometrically constrained domain. By using trimmed

Fig. 10 Optimization stages of the Michell type structure with geometric constraint: (a) Initial design, (b) Stage 2, (c) Stage 4, (d) Stage
10, (e) Stage 20 and (f) Stage 25 (final result)

Fig. 11 Convergence histories of the Michell type structure with
the geometric constraint

Fig. 12 Optimization result of the Michell type structure without
the geometric constraint [36]

Fig. 13 The spanner structure with profile geometric constraint:
(a) Design domain and (b) distribution of initial holes
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elements, the geometric constraint is added and the
optimization will occur inside the spanner. The profile
with a thickness is retained by simply placing a tolerance
zone around the spanner profile and forcing the coefficients
inside the tolerance zone to be positive [21].
Some intermediate optimization solutions are shown in

Fig. 14, and the objective function and the volume ratio as
a function of the iterations are provided in Fig. 15. Similar
to the Michell type structure, the structure changes rapidly
during the initial iterations (Figs. 14 (a)–14(c)), and when
major internal feature are formed (Fig. 14(d)). Most of the
iterations are spent in small refinements of the geometry
(Figs. 14(d)–14(h)). From the result, it is obvious that the
geometric constraint domain is maintained across the entire
range of iterations. The objective function value is very
large during the initial iterations and falls rapidly for the
same reasons as in the previous example.
Comparing to the geometric constraint applied by R-

Fig. 14 Optimization stages of the spanner structure with geometric constraint: (a) Initial design, (b) Stage 2, (c) Stage 5, (d) Stage 10,
(e) Stage 20, (f) Stage 30, (g) Stage 40 and (h) Stage 55 (final result)

Fig. 15 Convergent histories of the spanner type structure with
geometric constrain
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function, the proposed method in this work has significant
advantages. Figure 16 shows the construction of geome-
trically constrained domain of the spanner model by R-
functions. We need to manually decompose the design

domain and repeatedly use R-functions to obtain the LSF
of the geometric constraint. Besides this tedious pre-
processing work, the TO based on the R-functions actually
runs on the whole domain as Ω0 in Fig. 16, which costs
extra CPU time in the computation of the domains that do
not belong to the spanner domain. Figure 17 shows that the
LSF occupies the whole domain. For this example, the
time spent in one iteration is 173.4 s by the R-function
method, but only 97.6 s by the method proposed in this
paper, which demonstrates the high efficiency of the
proposed TO scheme.

8 Conclusions

In this paper, a geometrically constrained isogeometric
level-set based TO is proposed. The NURBS basis
functions are applied to both the parameterization of the

Fig. 16 Construction of geometrically constrained domain of the spanner model by R-functions. The operator ^ represents the R-
conjunction operation [66] which can be also regarded as an intersection operation

Fig. 17 The R-function LSF of the spanner domain Ω15 in Fig. 16
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free boundary LSF and the IGA, which may greatly
improve the efficiency and accuracy because of the
properties of IGA [29]. A fast PIP algorithm is used to
identify the constrained domains for arbitrary geometries.
The trimmed elements, caused by the geometric con-
straints, are calculated by a highly efficient quadrature rule
that designs optimal quadrature points and weights.
A Michell structure examples with and without

geometric constraints are analyzed and used to compare
the optimization results. The results show that the
geometric constraints obviously influence the structures.
A spanner example is used to further demonstrate the
proposed method, and shows advantages over conven-
tional TO with the geometric constraints by R-functions.
In the future, we plan to improve this method and extend

it to the 3D problems, and further combine the 3D topology
with the 3D printing technology [67] to expand the
practical applications of the TO.
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