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Topology Optimization of Total
Femur Structure: Application of
Parameterized Level Set Method
Under Geometric Constraints
Optimization of the femur prosthesis is a key issue in femur replacement surgeries that
provide a viable option for limb salvage rather than amputation. To overcome the draw-
back of the conventional techniques that do not support topology optimization of the
prosthesis design, a parameterized level set method (LSM) topology optimization with ar-
bitrary geometric constraints is presented. A predefined narrow band along the complex
profile of the original femur is preserved by applying the contour method to construct the
level set function, while the topology optimization is carried out inside the cavity. The
Boolean R-function is adopted to combine the free boundary and geometric constraint
level set functions to describe the composite level set function of the design domain.
Based on the minimum compliance goal, three different designs of 2D femur prostheses
subject to the target cavity fill ratios 34%, 54%, and 74%, respectively, are illustrated.
[DOI: 10.1115/1.4031803]

1 Introduction

Proximal and total femur resections with endoprosthetic recon-
struction are complex surgical procedures because of their safety
and good functional outcome [1]. Figure 1 highlights the satisfac-
tory appearance of a femur radiograph 14 months after a femur
replacement surgery. However, the femur replacement with a
modular prosthesis can be risky in the long term because it may
cause stress shielding, which refers to the development of osteo-
porosis or resorption of the cortical bone as a result of removal of
stress from the bone by an implant [3,4]. Khanoki and Pasini
designed a novel hip implant made of a cellular material having a
periodic micro-architecture, i.e., a lattice displaying graded prop-
erty distribution to avoid progressive damage and fatigue caused
by daily cyclic loading [5–7]. In this approach, a multi-objective
optimization strategy based on minimization of two conflicting
indices, bone resorption and interface stress, is combined with
multiscale analysis of the hip implant with controlled lattice
micro-architecture.

The idea of the prosthetic design is to adopt the external shape
of the original femur by preserving certain thickness along the
profile for effective muscle and tendon reattachment. A contact
surface similar to the original condition results in even distribu-
tion of stress transmitted to the articular cartilage and the sub-
chondral bone, and thereby reduces the risk of wear and erosion
[8]. Wolf’s law assumes that the bone is capable of adapting to
the mechanical stimulation and optimizing energy expenditure to
keep the tissue in a good condition [9]. Bone adaption can be

Fig. 1 Fourteen months postoperative radiograph of a 73-year-
old man after total femur replacement [2]
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considered as the optimization problem of minimizing the total
bone strain energy corresponding to the given loading condition
[10]. Therefore, in this paper, topology optimization aims at the
objective of minimal strain energy of the total femur subject to the
designated total weight and is performed inside the cavity domain
[11,12].

Topology optimization has become a powerful and effective
tool to improve the mechanical designs [13,14]. The earliest
research of topology optimization in engineering can be traced
back to the well-known “Michell truss” that is a plane truss with
an optimal stiffness for a given weight in 1904 [15]. Researchers
have made a significant progress since the homogenization
method [16], the solid isotropic microstructure with penalization
method [17], and the evolutionary structural optimization [18]
were proposed. The above methods, which adopt explicit material
representation [19–21], are element-based optimization methods,
and thus their results are usually identified with zigzag features
[22,23].

This deficiency can be overcome by the level-set-based topol-
ogy optimization method which adopts an implicit description of
boundaries. The LSM was proposed by Osher and Sethian [24]
who used level sets as a tool to track and model the evolution of
moving boundaries. The LSM was first applied to topology
optimization in the early 2000s by Sethian and Wiegmann [25] to
capture the free boundary of a structure. Osher and Santosa
[26] combined LSM with a shape sensitivity analysis framework
for structural optimization in 2001. Wang et al. [22,27] proposed
a “velocity vector” to setup the Hamilton–Jacobi partial differen-
tial equation (PDE), which naturally related to the shape deriva-
tive from the classical shape variational analysis. Another
branch of the LSM was developed by Allaire et al. [28–30], who
independently developed a numerical framework that used the
velocity of level set boundaries for shape sensitivity analysis. A
predictor–corrector scheme for constructing the velocity field in
level-set-based topology optimization was developed to improve
the computational efficiency [31]. Zhu et al. [32] proposed a two-
step elastic modeling method for the topology optimization of
compliant mechanisms aimed at eliminating de facto hinges and a
high efficiency optimization algorithm that can yield fewer design
iterations.

For conventional LSMs, the Hamilton–Jacobi PDE was solved
explicitly, which decreased the efficiency because of the limita-
tion of the time step size for convergence stability and reinitializa-
tion of level set functions. In contrast, the parameterized LSM
converted the Hamilton–Jacobi PDE into a simpler set of ordinary
differential equations using radial basis functions (RBFs) [33,34].
Luo et al. [35–37] further presented a parameterized LSM using
compactly supported RBFs (CSRBFs). Wei et al. [38] introduced
the extended finite element method (XFEM) into RBF-based
level-set structural optimization to address the elements across the
boundaries and obtained more accurate optimal results.

Geometric shape control plays an important role in the topology
optimization problem. Some researchers have made pioneering
contributions in this field. Chen et al. [39,40] used the R-function
in a B-spline parameterized level set topology optimization to
realize the explicit parametric control of geometry and topology
within a large space of free form shapes. Chen et al. [41]
employed high-order energy functional in the topology

optimization to generate striplike designs with a specified feature
width. Recently, Guo et al. [42] proposed a scheme for complete
explicit control of the feature sizes in topology optimization using
the signed distance function. Allaire et al. [43] proposed a thick-
ness control based on the signed distance function. Liu et al.
[44,45] used the parameterized LSM with the CSRBF and
R-function for a unified topology and shape optimization method
of a continuum structure with geometric constrains, and later
applied them to eigenvalue topology optimization.

The geometric constraints imposed by the R-functions are effi-
cient in solving simple geometry problems, but they may become
computationally expensive to setup the level set functions for the
complex geometries. Detailed explanations are presented in
Sec. 2.2.1 with an example. Therefore, we perform topology opti-
mization of a 2D femur structure by developing new techniques
that combines contour functions and Boolean operations to config-
ure the level set functions. Note that material optimization or mul-
tiscale design based on homogenization of microstructures are
beyond the scope of the paper [7,46]. Only one isotropic material,
e.g., titanium alloy, is used in the optimization.

2 Methods

In this paper, the objective of topology optimization is to mini-
mize compliance of the design subject to the goal weight, which
is performed based on the framework of CS-RBF parameterized
LSM [44]. In the context of implicit geometric representation, the
structural boundary is defined as the zero level set, and the evolu-
tion of the level set function is governed by the Hamilton–Jacobi
PDE. As an extension of the traditional level set scheme, the con-
tour function satisfying Lipschitz continuity is specially chosen to
build the level-set function of the irregular femur profile as geo-
metric constraints. The shape derivative method is implemented
to find the sensitivities of the objective function and constraint
with respect to the expansion coefficients of the basis functions,
while XFEM is used to compute the stiffness matrix and the opti-
mality criteria method used to solve the optimization problem.

2.1 Parameterized LSM. Figure 2 gives an example of a 2D
design domain X with level set function. The design boundary @X
is implicitly embedded as the zero level set of a level set function
U(x, t), where t is a pseudotime. The U(x, t) can be defined over a
reference domain D�Rd (d¼ 2 or 3) including all the admissible
shapes. The scheme of the 2D structure can be defined as

Uðx; tÞ > 0() x 2 Xn@X at time t ðinside the boundaryÞ
Uðx; tÞ ¼ 0() x 2 @X \D at time t ðon the boundaryÞ
Uðx; tÞ < 0() x 2 DnX at time t ðoutside the boundaryÞ

8><
>:

(1)

The Hamilton–Jacobi equation is obtained by taking the deriva-
tive of the level set function U(x, t) with respect to the pseudotime
t [27,37]

@U x; tð Þ
@t

� �nj�Uj ¼ 0; U x; 0ð Þ ¼ U0 xð Þ (2)

Fig. 2 A 2D design domain and the level set model
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where the normal velocity �n ¼ � � ð�U=j�jUÞ, and U0(x) is the
initial level set function.

The scalar level set function can be interpolated at the knots as

Uðx; tÞ ¼ uðxÞTaðtÞ ¼
Xn

i¼1

/iðxÞaiðtÞ (3)

where n is the number of knots, uðxÞ ¼ ½/1ðxÞ;/2ðxÞ;…;/nðxÞ�T
is the interpolation vector of the shape functions, and aðtÞ ¼
½a1ðtÞ; a2ðtÞ;…; anðtÞ�T is the expansion coefficient vector. Note
that for parametric LSM, updating of the level set function during
each optimization iteration is directly operated based on the
expansion coefficients. A CS-RBF with C2 smoothness, because
of a strictly positive definiteness and sparsity of collection matri-
ces [47,48], is adopted to interpolate the level set function as
follows [35]:

/ðrÞ ¼ ½maxð0; ð1� rÞ4Þ� � ð4r þ 1Þ (4)

where the radius of support r is the scaling distance from knot
(x, y) to knot (xi, yi)

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xið Þ2 þ y� yið Þ2

q
d

(5)

where d is a scaling parameter factor chosen 2–4 times of the ele-
ment size [36]. By substituting Eq. (3) to Eq. (2), the space and
time of the Hamilton–Jacobi PDE are separated and the PDE can
be rewritten as

u xð ÞT da tð Þ
dt
� �nj �uð ÞTa tð Þj ¼ 0 (6)

where �n related to the time derivative of the expansion coeffi-
cients is expressed as

�n ¼
u xð ÞT

j �uð ÞTa tð Þj
da tð Þ

dt
(7)

In this way, the original level set optimization problem is con-
verted into a parameterized level set optimization problem.

2.2 Level Set Model Including Arbitrary Geometric
Constraint. In this section, contour function method based on the
minimal point-polygon distance is proposed to construct a level
set function for topology optimization with complex geometric
constraints, e.g., concave profile of a total femur.

2.2.1 Conventional Level Set Function for Regular Convex
Geometries. For a simple convex geometry, e.g., a circle, the level
set function can be directly derived from the circle equation as

Ucðx; yÞ ¼ r2
c � ðx� x0Þ2 � ðy� y0Þ2 (8)

where (x, y) is a point in the design domain, rc is the radius of the
circle, and (x0, y0) is the center of the circle.

A general Boolean operation can represent a complex geometry
on multiple simple geometries. Similarly, the level set function of
design domain is obtained by a large number of Boolean opera-
tions \ and [ through the R-functions. One pair of R-functions
can be written as follows:

U1 \ U2 ¼
1

1þ a
U1 þ U2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

1 þ U2
2 � 2aU1U2

q� �
(9)

U1 [ U2 ¼
1

1þ a
U1 þ U2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

1 þ U2
2 � 2aU1U2

q� �
(10)

where a is an arbitrary parameter that satisfies jaj � 1. Parametric
study showed that a¼ 0.5, as adopted in the paper, performed the
best to balance both the convergence speed and the smoothness of
design boundary at the same time [44]. Therefore, a more general
method to construct the level set function of a convex polygon is
using R-function to combine boundary line functions, e.g., the
level set functions of three edges of a triangle are

U1ðx; yÞ ¼ a1xþ b1yþ c1

U2ðx; yÞ ¼ a2xþ b2yþ c2

U3ðx; yÞ ¼ a3xþ b3yþ c3

8><
>: (11)

where ai, bi, ci (i¼ 1, 2, 3) are coefficients, and then the level set
function of the triangle is constructed by R-function as

URðx; yÞ ¼ U1ðx; yÞ \ U2ðx; yÞ \ U3ðx; yÞ (12)

A major disadvantage of the above method is that it may be
costly for the complex nonconcave geometries, as shown in
Fig. 3. It limits the application of level set topology optimization
to the artificial femur prosthesis because of the complexity of its
geometric profile that should match the curve of the neighboring
articular cartilage.

2.2.2 Contour Function for Arbitrary Geometric Constraint.
In order to realize the level set topology optimization with geo-
metric constraints, we will propose contour function method to
construct a level set function of arbitrary geometry UR(xi). For a
2D problem, since the enclosed boundary curve can be approxi-
mated as a polygon, in contour function, the amplitude is deter-
mined by the minimal point-polygon distance and its sign is
determined by the position relation of point and polygon. Appa-
rently, for any point on the polygon, the minimal point and bound-
ary line distance is zero, which represents zero level set. The
point-in-polygon (PIP) problem is a typical problem in computa-
tional geometry that asks whether a given point in the plane lies
inside, outside, or on the boundary of a polygon. One simple solu-
tion of PIP problem is ray casting algorithm or also known as
crossing number algorithm [49,50]. It first tests how many times a
ray, starting from the point and going in any fixed direction, inter-
sects the edges of the polygon. In the case that the given point is
not on the boundary of the polygon, it is outside if the number of
intersections is an even number, and it is inside if odd. The proce-
dure of construction contour function is shown as follows:

� Step 1: Extract the enclosed boundary line C of the model
and discretize the line into m segments along the counter-
clockwise direction. Note that a curved boundary line should
be partitioned to more segments for higher accuracy.

� Step 2: For an arbitrary knot i inside or outside the boundary
line C, loop over all the segments and compute the minimal
distance dij (j¼ 1, 2,… m) between the knot i and each
segment j with finite length.

Fig. 3 Example of complex geometry: snowflake pattern
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� Step 3: Calculate the absolute value of level set function at
knot i as jURðxiÞj ¼ di ¼ minðdijÞ; j ¼ 1; 2;…m.

� Step 4: Judge the position relation between knot i and bound-
ary line C using ray casting algorithm.

� Step 5: If the interior domain of the model is retained while
the exterior domain is cut off, the level set function is shown
as follows:

URðxiÞ ¼ di ðknot i is inside CÞ
URðxiÞ ¼ �di ðknot i is outside CÞ

(
(13)

If the interior domain of the model is cut off while the exterior
domain is retained, the level set function is shown as follows:

URðxiÞ ¼ �di ðknot i is inside CÞ
URðxiÞ ¼ di ðknot i is outside CÞ

(
(14)

Figure 4 concisely presents the flowchart of the above proce-
dure. In total, a composite level set function can be setup by using
R-function such as

Uðx; tÞ ¼ RðUF;U
1
R;U

2
R � � �Uk

RÞ (15)

where R denotes the R-function Boolean operations, UF denotes
free boundary level set function, and k denotes number of contour
level set functions Ui

R for geometric constraints. Note that the
choice of the level set function requires Lipschitz continuity [51].
It can be proved that contour function UR is Lipschitz continuous
by triangle inequality theorem (see the Appendix).

In the topology optimization of the prosthesis, the impenetrable
constraint requires reservation of a region with finite thickness d
along the profile of femur. Since that contour function UR denotes
the point-boundary distance, the level set of boundary domain can
be represented by 0�UR� d. For each optimization iteration, we

Fig. 4 Flowchart of contour function construction
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keep the boundary domain by setting the expansion coefficients
inside positive.

2.3 Definition and Analysis of Topology Optimization
Problem. Generally, LSM topology optimization for minimum
compliance design problem can be mathematically written in
terms of the energy functional theory as follows:

Minimize : J u;Uð Þ ¼ 1

2

ð
D

Eijkle
T
ij uð Þekl uð Þ

h i
H Uð ÞdX

Subject to : a u; v;Uð Þ ¼ l v;Uð Þ; 8v 2 U; uj@X ¼ u0

ai;min � ai � ai;max

V Xð Þ ¼
Ð

DH Uð ÞdX� Vmax � 0

(16)

where J(u, U) is the objective function, Eijkl is the elastic modulus
tensor, u0 is the prescribed displacement on the admissible Dirich-
let boundary, and the inequality V(X)�Vmax represents the
volume constraint. ai are the design variables, and H(U) is the
Heaviside function of level set function U.

The energy bilinear form a(u, v, U) and the load linear form
l(v, U) of the state equation may be written in the weak variational
forms as

aðu; v;UÞ ¼
ð

D

Eijkle
T
ijðuÞeklðvÞHðUÞdX (17)

lðv;UÞ ¼
ð

D

fvHðUÞdXþ
ð

C
pvdC (18)

where D is the design domain and C is its boundary, and f is
the body force and p is the boundary traction. The original con-
strained optimization problem is converted into an unconstrained
problem by the Lagrangian method [52] as

Lðu;UÞ ¼ Jðu;UÞ þ K
ð

D

HðUÞdX� Vmax

� �
(19)

In the conventional LSM, the steepest descent method is used to
ensure the decrease of the objective function by setting the normal
velocity �n to be the sensitivity of the objective function J(u, U)
with respect to the boundary variation of the design [27]. How-
ever, in the parameterization LSM, the normal velocity field �n

in Eq. (7) is substituted into Eq. (19) to express the Lagrangian
function as

@L u;Uð Þ
@t

¼
Xn

i¼1

@J u;Uð Þ
@ai tð Þ

@ai tð Þ
@t
þ K

Xn

i¼1

@V u;Uð Þ
@ai tð Þ

@ai tð Þ
@t

(20)

Since the partial derivative of Heaviside function H(U) is Dirac
function d(U) and dC ¼ dðUÞj�UjdX [27], the design sensitiv-
ities may be expressed as

@J u;Uð Þ
@ai tð Þ ¼ �

1

2

ð
D

Eijkle
T
ij uð Þekl uð Þ

h i
/id Uð ÞdX (21)

@V u;Uð Þ
@ai tð Þ ¼

ð
D

/id Uð ÞdX (22)

where d(U) is defined as ð1=pÞðn=U2 þ n2Þ and n is chosen as 2–4
times the mesh size, ai is the expansion coefficients, i.e., design
variables, and i¼ 1, 2,…,n, where n is the number of CS-RBF
knots. The sensitivity analysis is performed to update the design
variables. More details of the sensitivity analysis are discussed in
Refs. [36,37].

In the conventional LSM topology optimization, the “ersatz
material” approach [27,29] is utilized to the finite element analy-
sis, where a weak material is adopted to avoid singularity and the

element stiffness is proportional to the area portion of the solid
material within the element. However, this method is not accurate
enough, especially when the element size is large. In order to
improve the accuracy, Wei et al. [38] applied the XFEM to the
LSM topology optimization and the numerical examples showed
that the XFEM led to more accurate results.

Using the four-node rectangular element on a fixed Eulerian
grid as an example, the “ersatz material” method is used to evalu-
ate the element stiffness matrix in solid and void elements. The
solid material part of the boundary-crossing element is divided
into subtriangles, and the stiffness matrix of the element is
expressed as

KE ¼ Ks þKw ¼
ð

Xs

BTDsBdXþ
ð

Xw

BTDwBdX (23)

where Ds and Dw are the elastic matrices of the solid material and
weak material components, and B is the displacement differentia-
tion matrix for the whole element. The highly efficient Hammer
quadrature method [44,53] is applied to evaluate the solid material
stiffness matrix.

3 Results of Total Femur Prosthesis

In this section, the example shows the optimized total femur
prostheses targeting at different weights in the context of struc-
tural minimum compliance design.

Figure 5 shows a typical scaled femur fitted into the rectangular
design domain in yellow, whose width is normalized to 1. Note
that the envelope of the artificial femur for optimization is origi-
nated from RhinoSurf, a sample library of commercial CAD soft-
ware Rhino [54]. The width and height of the design domain are 1
and 4.78, respectively. According to the impenetrable boundary
constraint of the artificial femur, we set the fixed region with con-
stant shell thickness of 0.056. Therefore, optimization can be only
implemented inside the cavity enclosed by the femur shell, and
the background domain in Fig. 5 will be completely cut out. To
control the weight of the artificial femur, three designated cavity
fill ratios 34%, 54%, and 74% corresponding to volume ratio (the
ratio of the total shaded area to the rectangular area of the design
domain) 15%, 20%, and 25% are considered. Uniform traction is
applied on the right hand side of rectangular design domain,
which effectively transmits the pressure on the proximal femur
structure. The constraints of all degrees-of-freedom at the left
hand side of the design domain are equivalent to fixation of the
distal femur. The material parameters are given as follows:
Young’s modulus for solid material phase is 1000, for weak phase
is 1, and Poisson’s ratio for the both phases is 0.3. (Since the pros-
thesis is made of one isotropic material, it actually does not matter
what Young’s modulus is used for the solid phase. The Poisson’s
ratio of titanium alloy is assumed to be 0.3.) The design domain is
discretized with a mesh of 80� 320 quadrilateral elements.

By using the contour function method, the profile of the femur
can be imposed as zero level set. The level set function has posi-
tive values inside the femur and negative values outside when
Eq. (13) is applied. Optimization process of the case with 20%
volume ratio is shown in Fig. 6, and the corresponding convergent

Fig. 5 Design domain of the femur model
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histories are given in Fig. 7. The optimized results of a series of
different volume ratios are illustrated in Fig. 8. The total strain
energy, calculated by the integration of the total energy density
over the whole design domain, of the optimized femur designs
with volume ratio 15%, 20%, and 25% are 1.88� 102, 1.34� 102,
and 1.208� 102, respectively.

The limitations of the method are discussed as follows. First,
our method only allows macroscopic change of the structural
topology for homogenized materials. Khanoki and Pasini [7]
designed a cellular material with spatially periodic lattice micro-
structure for implants using porous tantalum, a biocompatible
material. The controllable microstructure, e.g., material porosity,
can be optimized with a fixed structural geometry. In the future, a
better design can be achieved by optimization based on multiscale
analysis. Another limitation is that the impact of the high-cycle
loading is ignored in current static analysis. Fatigue analysis of
the femur prosthesis should be involved in future researches [5,6].
Further study is also necessary to extend the optimization of
femur to 3D topology for the realistic designs. Finally, quantita-
tive measurement of both bone resorption [55,56] and implant sta-
bility [57–59] should be performed to assess both the short and
long term performances of the implant.

4 Discussions

There has been a substantial increase of femur replacement
used as a limb-saving option in the occasion of bone tumor treat-
ment and other nononcologic indications. One major problem is
how to design an efficient prosthesis in the sense: (a) match the
contact with the articular cartilage to avoid wear and erosion; (b)
maximal stiffness subject to the target total weight. In this paper,
we present a parameterized LSM topology optimization with arbi-
trary geometric constraints on the femur prosthesis design. In con-
trast to the conventional methods that represent the geometry
explicitly and may result in the zigzag pattern, smooth geometry
of the structure, which is implicitly represented by the level set
function, will be obtained in current method. The concave profile
of the original femur is preserved with a finite thickness by apply-
ing geometric constraints based on the contour function method,
while the topology optimization is only carried out inside the
cavity.

The key concept of the contour method is to construct Lipschitz
continuous contour function, which can easily represent arbitrary
geometries by setting the boundary as the zero level set and
directly assigning the signed minimal point-boundary distances to
the level set function. The geometric constraints are unified to the
free boundary level set function by using the R-functions into
the expansion coefficients. A numerical example of total femur
prosthesis illustrates the effectiveness and stability of the method.
The results show that the optimized structures have sufficient
smoothness to satisfy the design requirement.

Due to the complex internal geometry generated by the topol-
ogy optimization, it is very difficult to manufacture the structure
by traditional subtractive machining. The use of 3D printing tech-
nology even allows the designers to gain the power to control
over the topology of microstructure [60,61]. In the future, we will
extend the optimization capability to the 3D problems, and further
integrate the implicit representation of the complex geometry by
the level set function with the 3D printing technology [62] to
expand the practical applications of the topology optimization.
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Fig. 7 Convergent histories of the femur optimization

Fig. 8 Optimized femur results of different volume ratios: (a)
0.15, (b) 0.2, and (c) 0.25

Fig. 6 Optimization stages of the femur with volume ratio 20%:
(a) Initial design, (b) step 2, (c) step 6, (d) step 12, (e) step 16,
and (f) step 20 (final result)
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Appendix: Lipschitz Continuity of the

Contour Function

Recalling that the level set function U should satisfy Lipschitz
continuity [51] defined as

jUðxÞ � UðyÞj � Kjx� yj (A1)

Thus, the contour function Eqs. (13) and (14) have to satisfy the
above equation. According to point-domain position, two arbitrary
points x and y and a domain X can be classified into three cases:
(1) both inside the domain (Fig. 9(a)), (2) one inside and the other
outside the domain (Fig. 9(b)), and (3) both outside the domain
(Fig. 9(c)). In Fig. 9, suppose that the boundary of domain X is
the zero level set, the minimal point-boundary distances of x and
y are xx0 and yy0 , respectively. Assuming xx0 > yy0 , the conti-
nuity proof is given below.

If x and y are both inside or outside X (Fig. 9(a) or 9(c)),
according to the relationship of triangle sides, we can obtain

xy0 � yy0 � xy (A2)

Due to

xx0 � xy0 (A3)

Lipschitz continuity can be easily proved as

jUðxÞ � UðyÞj ¼ jxx0 � yy0 j � xy (A4)

If x is inside X and y is outside X (Fig. 9(b)), assuming point o
is the intersection point of xy and the boundary, we can obtain the
following inequalities:

xx0 � xo (A5)

yy0 � yo (A6)

Lipschitz continuity can be proved as

jUðxÞ � UðyÞj ¼ jxx0 þ yy0 j � jxo þ yoj ¼ xy (A7)
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