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Abstract This paper proposes a new level set-based to-
pology optimization (TO) method using a parallel strat-
egy of Graphics Processing Units (GPUs) and the
isogeometric analysis (IGA). The strategy consists of
parallel implementations for initial design domain,
IGA, sensitivity analysis and design variable update,
and the key issues in the parallel implementation, e.g.,
the parallel assembly race condition, are discussed in
detail. The computational complexity and parallelization
of the different steps in the TO are also analyzed in this
paper. To better demonstrate the advantages of the pro-
posed strategy, we compare efficiency of serial CPU,
multi-thread parallel CPU and GPU by benchmark ex-
amples, and the speedups achieve two orders of
magnitude.

Keywords Isogeometric analysis . Topology optimization .

Level set method . CUDA .GPU parallel computing

1 Introduction

Topology optimization (TO), a computational technique to
optimally distribute material within a prescribed design do-
main, is becoming one of the most efficient tools guiding
designers and engineers in the early design stages. During
the past three decades, TO has been used principally for tra-
ditional mechanics but its applications have been spreading to
a wide range of other engineering domains (Bendsøe and
Sigmund 2003; van Dijk et al. 2013). Several methods have
been used in TO, such as SIMP (Rozvany 2001), ESO (Huang
and Xie 2010), level set method (LSM) (Osher and Sethian
1988). Unlike other methods using explicit material represen-
tation, it is more convenient for the LSM-based TO method to
model geometric constraints by adopting an implicit descrip-
tion of boundaries (Wang et al. 2003), although it has some
drawbacks, e.g., depending on starting guess (Sigmund and
Maute 2013). Some scholars have contributed on LSM-based
TO and obtained some achievements (Allaire et al. 2013; Guo
et al. 2014; Herrero et al. 2013; Luo et al. 2007; Otomori et al.
2012; Wang et al. 2003, 2016; Wang and Benson 2016; Wei
et al. 2010; Xia et al. 2014a, b, c; Yamada et al. 2010).
However, in most conventional level set-based methods using
the finite difference method, the time step size has to be re-
strained to satisfy the Courant-Friedrichs-Lewy (CFL) condi-
tion so as to ensure the numerical stability of the time-
marching process (Allaire et al. 2004; Luo et al. 2007, 2008;
Wang et al. 2003). Furthermore, it usually requires the
reinitialization of the level set function (LSF) when it becomes
too flat or steep (Yamada et al. 2010), which decreases the
efficiency of the TO. The parameterized LSMs are one family
of those methods that can overcome these numerical short-
comings, which actually convert the original Hamilton-
Jacobi PDE into a relatively simpler set of ordinary differential
equations (ODEs) or an equivalent system of algebraic
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equations, so that the Hamilton-Jacobi PDE does not have to
be solved directly (Luo et al. 2008;Wang andWang 2006a, b).

In practice, most of TOmethods use the conventional finite
element method (FEM) (Hughes 2012) for the structural anal-
ysis and sensitivity calculation. However, there are some
drawbacks in the FEM, e.g., approximate model and low con-
tinuity (Wang and Benson 2015a, b). FEM is based on the
interpolation points positioned inside the design domain,
which are not suitable for the isogeometric interpolations
since for the isogeometric method the control points
are not necessarily located in the design domain
(Wang and Benson 2015a, b). In the past few years,
isogeometric analysis (IGA) (Cottrell et al. 2009;
Hughes et al. 2005; Wang et al. 2015a, b), which uses
the same basis functions for the geometric and compu-
tational models, has become one of the most efficient
methods to replace conventional computational methods
(e.g., the FEM and the boundary element method) in a
variety of domains (Bazilevs et al. 2006; Hsu et al. 2011; Li
and Qian 2011). IGA has been successfully applied in TO
problems due to its high accuracy and continuity. Seo et al.
(2010) first proposed an isogeometric TO by using trimmed
spline surfaces. Dede et al. (2012) proposed a TOmethodwith
IGA in a phase field approach. Tavakkoli et al. (2013) pre-
sented a control point-based approach for structural TO.Wang
and Benson (2015a, b) presented an accurate and efficient
isogeometric TO method that integrated the non-uniform ra-
tional B-splines based IGA and the parameterized LSM for
minimal compliance problems.

However, TO is a iterative computing process, which is
computationally expensive and resource-consuming especial-
ly for a large-scale problem (Duarte et al. 2015). For solving
more complicated and large-scale problems, parallel comput-
ing was used to the TO (Aage and Lazarov 2013). In recent
years, especially after CUDA was released by NVIDIA
(2007), graphical processing units (GPUs) have been success-
fully used in high-performance computations for complex sci-
entific problems (Challis et al. 2014; Kuźnik et al. 2012; Xia
et al. 2014a, b, c; Zegard and Paulino 2013). The GPU archi-
tectures are composed of hundreds, even thousands of cores
specially designed for parallel computing. CUDA is used in
this paper because of its better support by an NVIDIA GPU
(Mukherjee et al. 2012), which is favorable in engineering
applications (Georgescu et al. 2013; Ploskas and Samaras
2014; Wang et al. 2015a, b; Wei et al. 2015; Xia et al. 2015,
2016).

Recently, different strategies of GPU parallel TO have been
proposed for large-scale problems. Wadbro and Berggren
(2009) proposed an efficient method for large-scale TO prob-
lems with GPUs in heat conduction with over 4 million design
variables. Schmidt and Schulz (2011) proposed a method of
TO for structured meshes with a computationally intensive
task on GPUs, which is faster than a 48-core shared memory

CPU system. Suresh (2013) introduced an efficient algorithm
and implementation for large-scale 3D TO problems, which
can solve a 700 thousand DOFs problem in 125 s in a GPU. In
addition, Herrero et al. (2013) proposed an implementation of
the LSM-based TO in massively parallel computer architec-
tures using GPU, which showed a predominance in op-
timizing large scale problems. Challis et al. (2014) pre-
sented a high resolution for LSM-based TO with a GPU
implementation. A speedup reached approximately 13
times for more than 4 million design variables. Wu
et al. (2016) proposed a scalable system equipped with
a high-performance GPU solver for generating 3D ob-
jects using topology optimization, which can efficiently
handle models comprising several millions of elements.
However, their parallel strategies are not illustrated in
detail.

Concurrently, there have been large efforts on IGA with
GPU parallel computing. Kuźnik et al. (2012) developed a
multi-thread multi-frontal parallel direct solver for two dimen-
sional isogeometric FEMwith 1 million DOFs under 448-core
GPU. Woźniak et al. (2014) presented computational cost es-
timates for parallel shared memory isogeometric multi-frontal
solver. Karatarakis et al. (2014) proposed the formula-
tion of the stiffness matrix exhibiting several computa-
tional merits with GPU parallel computing, which can
accelerate the computing by orders of magnitude.
Woźniak (2015) analyzed the integration algorithm with
higher order B-spline basis functions and provided sets
of tasks that can be automatically scheduled and execut-
ed concurrently on GPU, and they can solve the 2D
problems with one million DOFs.

In this paper, the parallelization of the TO problem with
parameterized LSM and IGA is studied, and the computation-
al procedure of each step of the optimization approach is
discussed. The outline of the remainder of this paper is struc-
tured as follows: Sect. 2 briefly recapitulates NURBS-based
IGA and level-set based TO and GPU parallel architecture. In
Sect. 3, the parallel strategy for initial design domain with
LSM is analyzed and presented. The parallel strategy using
CUDA for IGA is discussed in Sect. 4. The implementing of
the parallel algorithm for sensitivity analysis and update
scheme of design variables is illustrated in Sect. 5. Several
examples demonstrate the advantages of the proposed GPU
parallel approach in Sect. 6. Finally, a brief summary is given
in Sect. 7.

2 Basic theory

2.1 NURBS basic theory

In IGA, non-uniform rational B-splines (NURBS) (Piegl and
Tiller 2012), constructed from B-splines, are commonly used
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for the numerical discretization. A knot vectorΠ, which con-
sists of n spline basis functions, is a sequence of non-
decreasing real numbers representing parametric coordinates
of a curve:

Π ¼ η1; η2;⋯; ηnþpþ1

n o
; ð1Þ

where p is the order of the B-spline. The interval [η 1, η n+p+1]
is called a patch, andthe knot interval [η i, η i+1) is called a
span. Given a knot vector, the B-spline basis functions are
recursively defined following the Cox-de Boor formula (De
Boor 1972):for zero order (p=0),

Bi;p ηð Þ ¼ 1 if ηi≤η < ηiþ1;
0 otherwise;

�
ð2Þ

and for non-zero order (p>0)

Bi;p ηð Þ ¼ η−ηi
ηiþp−ηi

Bi;p−1 ηð Þ þ ηiþpþ1−η
ηiþpþ1−ηiþ1

Biþ1;p−1 ηð Þ: ð3Þ

Based on the tensor product formalism, two dimensional
B-spline basis functions are constructed as

Bj;q
i;p

η; ζð Þ ¼ Bi;p ηð ÞBj;q ζð Þ; ð4Þ

where Bi,p(η) and Bj,q(ζ) are univariate B-spline basis
functions of order p and q, corresponding to knot vec-
tors Π = {η1, η2,…, ηn + p +1} and Η = {ζ1, ζ2, …, ζm +

q +1}. NURBS basis functions are obtained from B-
splines by assigning a positive weight wi to each basis
function

Ni;p ηð Þ ¼ Bi;p ηð ÞwiX n

j¼1
Bj;p ηð Þwj

: ð5Þ

By the tensor product formulation, two dimensional
NURBS basis functions are constructed as

N j;q
i;p

η; ζð Þ ¼ Bi;p ηð ÞBj;q ζð Þwi; jX n

k¼1

X m

t¼1
Bk;p ηð ÞBt;q ζð Þwk;t

; ð6Þ

where wi,j is the weight value corresponding to the tensor
product Bi,p(η)Bj,q(ζ).

2.2 LSM-based topology optimization

In the LSM, the structural boundary ∂Ω is implicitly embed-
ded as the zero level set of a one-dimensional-higher level set
function (LSF) Φ(x, t) which is Lipschitz continuous
(Osher and Fedkiw 2001), where t is a pseudo time.
The LSF Φ(x, t) is defined over a reference domain D ⊂Rd

(d=2 or 3), and a two-dimensional model expressed with
level set is shown in Fig. 1. The mathematical representation

of the structure with level set can be defined as (Allaire et al.
2004; Luo et al. 2008)

Φ x; tð Þ > 0 ⇔ x∈Ωn∂Ω materialð Þ;
Φ x; tð Þ ¼ 0 ⇔ x∈Γ interfaceð Þ;
Φ x; tð Þ < 0 ⇔ x∈DnΩ voidð Þ:

8><
>: ð7Þ

Differentiating the LSF Φ(x, t) with respect to the pseudo-
time t, the Hamilton-Jacobi equation is obtained as (Luo et al.
2009):

∂Φ x; tð Þ
∂t

−vn ∇ Φ x; tð Þj j ¼ 0; Φ x; 0ð Þ ¼ Φ0 xð Þ; ð8Þ

where the normal velocity vn = (∂x/∂t) · (▽Φ/|▽Φ|), and
Φ0(x) is the initial LSF. The Hamilton-Jacobi PDE is
solved to move the boundary along the normal
direction.

2.3 NURBS parameterized LSM-based TO

In the conventional level-set schemes, a level-set model math-
ematically described as the Hamilton-Jacobi PDE (Allaire
et al. 2014). However, solving the Hamilton-Jacobi is difficult
and time-consuming. To solve this problem, parameterized
LSMs are used to convert the Hamilton-Jacobi problems into
ordinary differential equations (Luo et al. 2007). There are
several different interpolation functions that can be adopted
for this parameterization, e.g., the linear B-spline basis func-
tions used by Chen et al. (Chen et al. 2007, 2008), globally
supported radial basis functions (RBFs) used by Wang et al.
(Wang and Wang 2006a, b) and compactly supported
radial basis functions (CS-RBFs) proposed by Luo
et al. (Luo et al. 2007, 2008). These methods are all
based on the interpolation points on the design domain,
which is not suitable for the isogeometric interpolations
since the control points are not necessarily in the design
domain (Wang and Benson 2015a, b). In the NURBS-
based parameterized LSM, the original PDE can be
transformed into a set of ODEs that are simpler to solve
numerically (Wang and Benson 2015a, b). The core idea
of this method is to use the NURBS basis functions
(not interpolation) to represent the LSF in a parameter-
ized mode as

Φ x; tð Þ ¼ N xð ÞTφ tð Þ ¼
X

i

N i xð Þφi tð Þ; ð9Þ

where φi(t) is the ith expansion coefficient associating
with the ith grid point. Ni(x) is the corresponding basis
function of NURBS. After this parameterization, the
LSF associated with both space and time is divided into
the spatial terms Ni(x) and the time dependent terms
φ i(t), and only the latter are updated during the
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optimization procedure. Substituting (9) to (8), the
Hamilton-Jacobi PDE is rewritten as

N xð ÞT ∂φ tð Þ
∂t

−vn ∇N xð Þð ÞTφ tð Þ�� �� ¼ 0; ð10Þ

where the νn related to the time derivative of the expansion
coefficients is

vn ¼ N xð ÞT
∇N xð Þð ÞTφ tð Þ�� �� ∂φ tð Þ

∂t
: ð11Þ

The parametric coordinates η and ζ are used, thus the con-
trol points can be adopted to interpolate the LSF of the design
domain, and (9) may be written as

Φ x; tð Þ ¼ Φ x η; ζð Þ; tð Þ ¼
X

i

N i η; ζð Þφi tð Þ: ð12Þ

where Ni(η, ζ) is the basis function of the ith control point
influencing on (η, ζ). Compared with conventional FEM, the
NURBS basis functions of IGA are referred to control points
instead of nodes, which are not interpolatory like the
Lagrangian FEM basis functions (Luo et al. 2007,
2008). The spatial discretization of the different schemes
with quadratic elements is shown Fig. 2, which shows
that the number of DOFs is much smaller in IGA, and
the control points influencing an element are not neces-
sarily in the element domain and may be out of the
problem domain.

The procedure of the NURBS-based parameterized TO for
minimum compliance problem can be described as Fig. 3. The

boxes inside the dash lines represent the main steps in the
loop, the optimal topology is obtained when the change of
objective functions between two iterations is lower than a
specified tolerance.

2.4 GPU parallel architecture

GPUs were originally used for graphic processing but are
increasingly applied to scientific computations due to their
outstanding computational power, especially since NVIDIA
released CUDA in 2007 (Kirk 2007). Under CUDA, a pro-
gram is composed of both host part (CPU) and device part
(GPU), where host part is in charge of serial parts, and device
part is in charge of parallel parts. The functions defined in
device part are called kernel functions. Threads are the units
of execution on the GPU. A certain number of threads bundled
together form a thread block. Within a block, threads are ex-
ecuted in groups called warps (32 threads) which are always
run together on a processor (core) as shown in Fig. 4 (SFU
represents Super Function Unit). The warp is the unit of thread
scheduling in streaming multiprocessors (SMs), which in-
cludes a number of hardware streaming processors (SPs).
Figure 3 shows the division of blocks into warps in an imple-
mentation. A SM is designed to execute all threads in a warp
following the single instruction, multiple data (SIMD) model.
Note that these threads will apply the same instruction to dif-
ferent portions of the data. As a result, all threads in a warp
will always have the same execution time.

Several memories can be used by programmers to achieve
high efficiency in GPU (Kirk and Wen-mei 2012). Global

(x,t) <0

(x,t) =0

(x,t) >0Φ

Φ

Φ D

D\Ω



Ω\∂Ω

(a) Level-set function and zero level-set.          (b) Design domain and boundary.

Fig. 1 2D design domain and
level-set model. a Level-set
function and zero level-set. b
Design domain and boundary

(a) Quadratic NURBS elements of IGA. (b) Quadratic Lagrange elements of FEM.

Fig. 2 Spatial discretization of
IGA and FEM for a quarter
annulus model. a Quadratic
NURBS elements of IGA. b
Quadratic Lagrange elements of
FEM
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memory, shared by the whole GPU which has a noticeable
latency, usually stores input and output data; registers are al-
located to individual threads, and each thread can only access
its own registers (access speed is very high). Shared memory
can be accessed by all threads in a block almost as fast as

registers. Constant memory is cached, where host can write
and read but device can only read; local memory which is
allocated to each thread usually stores data when register is
used out; and texture memory has some special functions
(e.g., texture rendering).

Input Domain

Refine patch with NURBS 

elements and build connectivity

Optimal Topology

Construct initial design,

calculate NURBS basis function

Ni(x), get initial LSF Φ0(x)

and initial design variables φ

Objective function

Isogeometric Analysis KU=F
Sensitivity Analysis

OC method to 

update design variables φ

Convergence

criterion

Fig. 3 TO procedure for the
compliance minimization
problem

Streaming Multiprocessor

Instruction L1

Instruction Fetch/Dispatch

SFU

SP

SP

SP

SP

SFU

SP

SP

SP

SP

Block 1 Warps

t0 t1 t2 t31...

...

Block 1 Warps

t0 t1 t2 t31...

...

Block 1 Warps

t0 t1 t2 t31...

...

Instruction

Stream

Instruction

Stream

Fig. 4 Blocks are partitioned into
warps for thread scheduling
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3 Parallel strategy for initial design domain

3.1 Initial design domain

Through Sect. 2.3, the initial LSF as Φ(x, 0) is known when
the geometry of the initial design domain is known, but the
initial expansion coefficients of control points as φi(0) are
unknown. If the number of control points is n, n collocation
points need to be sampled in the initial design domain to set up
the equations as (9). In this work, the Greville abscissae is
used to sample the collocation points (Johnson 2005). For a
collocation point on a NURBS surface, there are two Greville
abscissae representing the coordinates in η and ζ coordinates,
respectively. Applying (9) at each collocation point yields
equations that may be assembled into a linear equation system

Φ ¼ Aφ; ð13Þ
where Φ is a vector consisting of initial LSF values at all
collocation points, A is a matrix consisting of the NURBS
basis functions values corresponding to the collocation points,

and φ is a vector of expansion coefficients at control points.
When φ is updated, the new LSF values are evaluated, while
the matrix A will not change. To construct the initial design,
holes are introduced into the design domain that are used to
describe the shape of the optimization results. Different num-
ber of initial holes would not influence the final topology
significantly (Luo et al. 2009). The initial LSF values can be
obtained from

rki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−cxkð Þ2 þ yi−cykð Þ2

q
−r0; k ¼ 1; 2;⋯;m;

Φ x; tð Þi ¼ min r1i ; r
2
i ;⋯; rki

� �
; i ¼ 1; 2;⋯; n;

ð14Þ

where xi and yi are the physical coordinates of the ith colloca-
tion point, r0 is the radius of the initial holes, ri

k is the distance
between the ith collocation point and the kth initial hole. The
initial LSF value of a collocation point is the minimum value
of ri

k. cxk and cyk are the physical coordinates of the kth initial
hole as shown in Fig. 5.

In the NURBS-based LSM, the vertices of the NURBS
spans are used (i.e., elements in IGA) as interpolation points,

r0

r0

ri
0

ri
k

ri
k

i-th collocation point

(cxk, cyk)

Fig. 5 Initial LSF value of a
collocation point

B: Block

T: Thread

Gridx

y

calculation
Sn,m

0
n,m

An,m

ηn,m ζn,mFig. 6 CUDA parallel strategy
for initial design domain
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which is used to track the zero-level set boundaries and per-
form the visualization. The physical coordinates of the points
are available by the point inversion (projection) algorithm
(Piegl and Tiller 2012), so meshing is not needed. The LSF
values of the interpolation points may be obtained by (13) as
matrix B.

3.2 CUDA parallel strategy for initial design domain
of LSM

3.2.1 Hierarchy of CUDA thread and memory

Through analyzing the initial design domain procedure, its
computations are amenable to parallelization. A CUDA kernel
is executed in a grid of thread blocks indexed by a 2D block
identification (id) in the form (row, column). Herein, “One-
thread-one-collocation point” mode of parallelization with
CUDA is adopted, and 2D grids and blocks (Kirk and Wen-
mei 2012) are chosen since the TO problem is 2D. Each thread
can be properly used to deal with a collocation point. The

number of threads nt in a block is usually set as times of 32,
which is the size of a warp (Kirk and Wen-mei 2012), and nt
can be adjusted to obtain the optimal performance for different
GPU devices. Figure 6 shows such an arrangement for
parallelizing the initial design domain with nx*ny (nx=128,
ny=64) collocation points, and nt is set to be 16*16=256
according to “latency tolerance” mechanism (Kirk and Wen-
mei 2012). Then the number of blocks in a grid nb can be
chosen not less than nx*ny/nt.

Each thread is assigned to charge the computation of para-
metric coordinate η and ζ, physical coordinates S, NURBS
basis functions and the initial LSF values Φ0 of one colloca-
tion point (m, n). CUDA uses grid and blocks to manage these
threads, and each thread has a unique global index, and the
mapping of the CUDA threads to all the computational sten-
cils is shown in Fig. 7. To access a piece of data stored in the
GPU global memory from a single thread in a block, the glob-
al index of the thread needs to be computed as Tn,m=n+m*ny.

Figure 8 presents a simple layout of the CUDA thread and
memory hierarchy in this parallel strategy. The data stored in

4 5 6
n*m
-1

...

...global 
memory

...

0 1 2

(4,0) (5,0) (6,0)
(n-1,

m-1)

global 
thread ID

(n, m) (0,0) (1,0) (2,0)
(n-1,

m-2)

n*m
-2

3

(3,0)

Global memory read/write Thread index mappingData of collocation point

Fig. 7 Stretch of thread
distribution

Collocation Point

1 2 3

4

5

6

7

8

9

(0, m-1) (n-1, m-1)

(n-1, 0)x

y

(0,0)

Sn,m
0
n,m An,m

Block 0
Host Memory

Global, Constant and Texture Memory

CPU (Host)

GPU (Device)

Shared Memory/ L1 cache Shared Memory/ L1 cache

Registers Registers Registers Registers

Thread (0,0) Thread (1,0) Thread (0,0) Thread (1,0)

Thread Block (0,0) Thread Block (1,0)

Thread Grid(0,0)

...

... ... ... ...

ηn,m ζn,m

Fig. 8 The model of the CUDA memory
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the host memory is firstly copied to the global memory of the
device, and proper use of shared memory will greatly benefit
the program performance especially when there are a lot of
data reuse (Kirk and Wen-mei 2012). Constant memory is
used to store important input parameters herein such as the
order of the NURBS (p and q), the number of collocation
points (nx and ny), the domain size and the minimum radius
of the holes (r0), etc., which can reduce the required memory
bandwidth (Kirk andWen-mei 2012). The data copied into the
constant memorywill not be changed during kernel execution,
which make CUDA directs the hardware to aggressively
cache the constant memory variables. Thus they do not need
to be passed to the kernel as parameters.

3.2.2 Parallel strategy for initial design domain

A simplified parallel algorithm for initial design domain is
presented in Table 1. The← sign shows the variable assign-
ment in the local memory and the double line arrow ⟹/⟸
represents the device memory read/write access. The variables
with a star superscript are stored in the block shared memory.
p and q are the degrees of NURBS. The SurfacePoint() func-
tion uses the global thread index ij to find the collocation point
index, which enables the proper calculations in the GPU. The
Nurbs2DBasis() function calculates the NURBS basis func-
tions related to each collocation point. mx and ix arrays store

the maximum value and index value corresponding to the
objective function which will be used in sensitivity analysis.
The initial level set values Φ can be obtained from the mini-
mum distance between the holes and collocation points. r0 is
the minimum radius of the initial holes.

To assemble (16) as shown in Fig. 9, the initial LSF value
Φ and matrix A in each collocation point should be evaluated.
Then the vector of expansion coefficient φ can be solved,
which are the design variables in the TO procedure. The scale
of A is very large for large scale problems, thus it needs to be
stored with sparse format to save memory. Apart from the
reduced number of accesses to the global matrix, the calcula-
tion herein does not require lookups, thus the coordinate list
(COO) format is appropriate herein.

4 Parallel strategy of isogeometric analysis
for NURBS based TO

4.1 Isogeometric analysis

In IGA-based TO, IGA is used for the sensitivity analysis,
discretizing the design domain Ω into elements, and the same
NURBS basis functions are used for geometric representation
and sensitivity analysis. Therefore, no spatial discretization
error is introduced in the TO. For 2D problems, a variable
value x (e.g., coordinate, displacement and force.) correspond-
ing to a point with the geometric parametric coordinate (η, ξ) is
evaluated from the control point values as

x η; ζð Þ ¼
X

i

N i η; ζð Þxi; ð15Þ

where Ni is the basis function of the ith control point that
influence on (η, ζ), and xi is the corresponding value of the
control point. The spatial discretization with a patch contain-
ing 3×3 quatratic NURBS elements is shown Fig. 10 (Wang
and Benson 2015a, b). Additionally, the continuity between
the quadratic NURBS elements is C1.

The discrete equilibrium equation may be written as
(Hughes 2012)

KU ¼ F; ð16Þ
in whichK is the stiffness matrix,U is the displacement vector
and F is the external force vector associated with the control
points. The stiffness matrix K consists of the element stiffness
matrix Ke calculated by IGA.

4.2 Implementing isogeometric analysis with CUDA

The assembly of the stiffness matrix is a computationally de-
manding task. To build the global stiffness matrix, the local
stiffness matrix Ke should be built by adding the contributions

Table 1 Parallel algorithm for initial design domain

Segment 1 – Kernel 1, Calculate Greville abscissae and physical
coordinates of collocation points

m, n: number of colocations points en: element number, ed:
DOFs of en

cp: control point numbers, ed: element ID u, v: knot vectors,
w: weights

1: i← blockIdx.x*blockDim.x+ threadIdx.x

2: j← blockIdx.y*blockDim.y+ threadIdx.y

3: ij← i*n+ j

4: if i<m && j< n

5: ηij ←
viþ…þvi þ p‐1

p ; ζij ←
viþ…þviþq‐1

q ;

6: __syncthreads()

7: tem ⟸ SurfacePoint(n, p, u, m, q, v, C, ηij, ζij)

8: Sij ⟸
tem0
tem2

; Sij ⟸
tem1
tem2

;

9: cpen ⇒ ed; edij ⟸ en;

10: R* ⟸ Nurbs2DBasis(ηij, ζij, p, q, u, v, w
T)

11: Aij,ed ⟸ R*; [mxij, l] ⟸ max(R*); ixij=edl;

12: for k=0 to Nholes-1 do

13: tm*
k ⟸

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Si j‐xk; Si j‐yk

p
- r0

14: end

15: Φij ⟸ max(tm*)

16: end
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of all Gauss points of each element separately, then they will
be subsequently appended to the global stiffness matrix as
(17) in the appropriate positions:

K ¼
X
e

Ke: ð17Þ

4.2.1 CUDA thread race conditions

In the IGA procedure, “one-thread-one-element” mode of
parallelization is adopted as shown in Fig. 11. A typical prob-
lem is the racing of CUDA threads, where no less than two
threads (e.g., i with red color and j with blue color) attempt to
access the same memory location concurrently as shown in
Fig. 12. Thus there might be conflicting updates to the same
coefficients of the stiffness matrix.

The aforementioned race conditions can be avoided with
proper synchronization with atomic operations in massively
GPU parallel computing, but this is detrimental to perfor-
mance since all updates are serialized (Karatarakis et al.
2014). To address this problem, an approach combining the
advantages of MATLAB and the acceleration with
GPUs is proposed, which is inspired by the approach
described by Davis (Davis 2007). With this method,
the most compute-intensive part will be executed on
GPUs using CUDA, and the process of assembling the
global stiffness matrix K can be illustrated as Fig. 13.
Different from Fig. 11, the summation from local stiff-
ness matrices to the global stiffness matrix is executed
by sparse function in MATLAB.
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The sparse function takes three vectors as input arguments:
row and column indices (iK, jK) of the non-zero matrix en-
tries, which are collected in the third vector (vK) as shown in
Fig. 14. Specifying the same row and column indices multiple
times results in a summation of the corresponding entries.

4.2.2 Data structure and parallel strategy for IGA

The global stiffness matrix is stored in sparse format (Wong et al.
2015). Arrays of C/C++ structure are used to store the three
vectors (iK, jK and vK) of Ke, which is efficiently performed

on the sparse function avoiding the summation in CUDA to
avoid thread conflict. To accelerate the computational proce-
dures, the CUDA kernel should be integrated into MATLAB,
and the written C code for controlling the CUDA should be
adapted to MATLAB. Therefore, MEX-files (Andrews 2012),
which can dynamically link subroutines produced from C/C++
code, are utilized. The hybrid programming model with
MATLAB, C and CUDA is shown in Fig. 15.

A simplified parallel algorithm for IGA is presented in
Table 2, and the symbols represents the same meanings as
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Table 1. The BoundElement() function calculates the densities
dn and solid area a of each element ij. Φe represents the LSF
values of the interpolation points. The FilterSensitivity() func-
tion is a filtering scheme, which is used to smooth the free design
boundary within a narrowband region to practically improve the
smoothness of the strain energy densities by filtering the element

pseudo-densities using a window function (Luo et al. 2008). The
CalcEleDOF() function computes the DOFs of the specific ele-
ment. The parent2ParametricSpace() function is used to com-
pute coordinates in parametric space. The jacobianMapping()
function is used to transform Jacobi matrix. tol is the minimum
tolerance of each element’s density.D is the plane-stress elasticity

Table 2 Parallel algorithm for
isogeometric analysis Segment 1 – Kernel 1, Isogeometric analysis

idx: indices of elements en: element number, ed: DOFs of en

P: coordinates of control points elU, elV: range of elements

cp: control point numbers u, v: knot vectors, w: weights

Q, W: coordinates and weights of Gauss points Ngs: number of Gauss points

1: i ← blockIdx.x*blockDim.x+threadIdx.x

2: j ← blockIdx.y*blockDim.y+threadIdx.y

3: ij ← i*n+j

4: if i<m && j <n

5: [aij, dnj,i] ⟸ BouldElement(Φe)

6: A0 ⟸ A0+ aij
7: DNj,i ⟸ FilterSensitivity(DNj,i)

8: idxij,0 ⟹ iu; idxij,1 ⟹ iv;

9: elUiu ⟹ eη; elViv ⟹ eζ;

10: cpij ⟹ ed0; Ped0 ⟹ p;

11: ed ⟸ CalcEleDOF(ed0); nn ⟸ len(ed0);

12: if DNj,i < tol

13: DNj,i ⟸ tol

14: end

15: for k=0 to Ngs-1 do

16: Qk ⟹ pt; wk ⟹ wt;

17: η ⟸ parent2ParametricSpace(eη, pt0); ζ ⟸ parent2ParametricSpace(eζ, pt1);

18: J2 ⟸ jacobianMapping (eη, eζ)

19: [dη, dζ] ⟸ Nurbs2Dders([η, ζ], p, q, u, v, wT)

20: J ⟸ pT*[dη
T dζT]; J1 ⟸ det(J);

21: dR* ⟸ [dηT dζT]*J
−1

22: B ⟸ convert(dR*)

23: Ke
ed,ed ⟸ Ke

ed,ed + DNj,i*B
T
*D*B*J1*J2*wt

24: end

25: end

MATLAB

Mex file

Mexcudart.lib C file

obj file

NVCC CUDA file

Mex-C file

CUDA file

Input 

data

Output 

data

MATLAB

GPU Device Memory

CPU Memory

CUDA Kernal

(a) Process of building Mex-files. (b) Data process flow.

Fig. 15 Hybrid programming
model of MATLAB, C and
CUDA. a Process of building
Mex-files. b Data process flow
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matrix. The contributions of all Gauss points of the element are
accumulated to Ke, which will be assembled to K through
MATLAB built-in sparse function.

Note that the solid area aij of each element should be accu-
mulated as shown in Fig. 16, which will lead to access conflict in

GPU memory. To tackle this problem, a parallel reduction algo-
rithm is adopted here. Threads 0–127 (256 threads per block)

Block (0, 0)

...
Block (1, 0) Block (2, 0) Block (3, 0)

Block (0, 1) Block (1, 1) Block (2, 1) Block (3, 1)

Block (0, 0) Block (0, 1)
Add

Add

Add
i = 0, 1, 2,

...0 1 2

126,127, 129,130, 255254,128,... ...

126 127

...0 1 2 62 63

0

...

62,63,...

62 63 ...

0 1

Fig. 16 Reduction summation
for solid area A0

Table 3 Parallel algorithm for sensitivity analysis

Segment 1 – Kernel 1, Sensitivity analysis

cp: control point numbers, ed:
element ID

U, V: parametric coordinates

P: coordinates of control points u, v: knot vectors, w: weights

sn: strain energy of nodes sd: strain energy density

dJ: derivation of the objective function dC: derivation of the
constraint function

1: i ← blockIdx.x*blockDim.x+threadIdx.x

2: j ← blockIdx.y*blockDim.y+threadIdx.y

3: ij ← i*n+j

4: if i<m && j <n

5: edij ⇒ en

6: ex ⟸ en%(m-p); ey ⟸ floor( enm‐p );

7: Uij ⟹ η; Vij ⟹ ζ;

8: cpij ⟹ ed0; Ped0 ⟹ p;

9: ed ⟸ CalcEleDOF(ed0); nn⟸ len(ed0);

10: [dη, dζ] ⟸ Nurbs2Dders([η, ζ], p, q, u, v, wT)

11: J ⟸ cpT*[dη
T dζT]

12: dR ⟸ [dηT dζT]*J−1

13: B ⟸ convert(dR)

14: tm*⟸ B*Ued*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DNey; ex

p
15: ESij ⟸ (tm*)T;

16: sdij ⟸ -snij
T*D*snij

17: LTij ⟹ ti

18: dJti ⟸ sdij*mxij
19: dCti ⟸ mxij
20: end

Table 4 Parallel algorithm for the update scheme

Segment 1 – Kernel 1, Update scheme

ΛM, ΛR, ΛL: bound of Lagrange multiplier Λ nex, ney: number
of elements

1: ΛM = 0.5*(ΛR+ΛL)

2: while (ΛR-ΛL) (ΛR+ΛL) > tol1 && ΛR > tol2
# segement 1 – kernel 1

3: i ← blockIdx.x*blockDim.x+threadIdx.x

4: if i<n*m-1

5: xi ⟸ normalization(φi)

6: tm1 ⟸ max(tol3, -dJi (dCi*ΛM)

7: tm2 ⟸ min(xi + d, xi * tm1 ^ dp)

8: tm3 ⟸ min(tol4, tm2)

9: tm4 ⟸ min(xi – d, tm3)

10: xi
# ⟸ max(tol5, tm4)

11: φi ⟸ anti-normalization(xi
#)

12: end

# end segement 1

13: Φ#=B*φ

# segement 2 – kernel 2

14: i ← blockIdx.x*blockDim.x+threadIdx.x

15: if i<(nex+1)*(ney+1)-1

16: ai ⟸ BouldElement(Φ#)

17: A0 ⟸ A0+ ai
18: end

# end segement 2

19: if A0 – vf * nex*ney > 0 ΛL = ΛM

20: else ΛR = ΛM

21: end

22: ΛM ⟸ 0.5*(ΛR+ΛL)

23: end
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execute the add statement during the first iteration while threads
128–255 do not. The pairwise sums are stored in elements 0–127
after the first iteration. Since the warps consist of 32 threads
with continuous thread identities, all threads in warps 0–3
execute the add operations, whereas warps 4–7 all skip the
add operations (Kirk and Wen-mei 2012).

5 Parallel strategy for sensitivity analysis and update
scheme

5.1 Parallel strategy for sensitivity analysis

In the NURBS-based parameterized TO, the expansion coef-
ficients (φi in (16)) are used as the design variables instead of
the LSF values in the conventional LSM-based TO. For the
minimum compliance problem, the mathematical model
(Wang and Wang 2006a, b) may be defined as

Minimize : J u; Φð Þ ¼
Z

Ω
εT uð ÞEε uð ÞH Φð ÞdΩ;

Subject to : a u; v;Φð Þ ¼ l v;Φð Þ; u
���∂Ω ¼ u0; ∀v∈U ;

V Ωð Þ ¼
Z

Ω
H Φð ÞdΩ≤Vmax;

ð18Þ

whereH(Φ) is the Heaviside function (Wang andWang 2004).
J(u, Φ) is the objective function,E is the elastic tensor and ε is
the strain. u is the displacement, u0 is the prescribed displace-
ment on the admissible Dirichlet boundary and v is the virtual
displacement belonging to the space U. The inequality
V(Ω)≤Vmax represents the volume constraint. a(u, v, Φ) is
the bilinear form for the strain energy, l(v, Φ) is the linear for
for the load. Based on the methods in (Allaire et al. 2004; Luo
et al. 2007, 2008; Wang et al. 2003), the design sensitivities
with respect to the expansion coefficients of the NURBS-
based interpolation can be written as:

∂J u; Φð Þ
∂φi tð Þ

¼
Z

Ω
−εT uð ÞEε uð Þδ Φð ÞNidΩ; ð19Þ

∂V Φð Þ
∂φi tð Þ

¼
Z

Ω
δ Φð ÞNidΩ; ð20Þ

where δ(Φ) = (1/ π)*(γ/(Φ2+γ2)), and γ should be chosen as
2–4 times as the element size based on the numerical experi-
ences in (Luo et al. 2009). The parallel algorithm for the sen-
sitivity analysis with CUDA is given in Table 3. Similarly as
the previous parallel strategy, “one-thread-one-design vari-
able” mode of parallelization is adopted herein.
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5.2 Parallel strategy for the update scheme

The optimality criteria (OC)methods attempt to satisfy a set of
criteria related to the behavior of the structure to solve struc-
tural optimization problems (Hassani and Hinton 1998). It is

efficient for the optimization problems with a large number of
design variables and a few constraints (Bendsøe and Sigmund
2003), which is exactly the case in continuous TO with a
global material volume constraint. For more complicated
boundary conditions, other optimization schemes, e.g., the
method of moving asymptotes (MMA) (Luo et al. 2007;
Zuo et al. 2007), can be adopted instead of the OC method.
The updating method for design variables can be written as
(Luo et al. 2008) is

φ kþ1ð Þ
i ¼ −

∂J u; Φð Þ
∂φ kð Þ

i

.
Λk ∂V Φð Þ

∂φk
i

 !
φ kð Þ
i ¼ D kð Þ

i φ kð Þ
i ð21Þ

To simplify this update method, the variable vector φ is
normalized to a vector x ranging from 0 to 1, and the
minimal and maximal limits of x are set to 0.0001 and
1. The final form for the update method (Wang and
Benson 2015a, b) is

φ
kþ1ð Þ
i ¼

max 1−mð Þφ
kð Þ
i ;φmin

� �
; if D kð Þ

i

� 	ζ
φ

kð Þ
i ≤max 1−mð Þφ

kð Þ
i ; φmin

� �

D kð Þ
i

� 	ζ
φ

kð Þ
i ; if max 1−mð Þφ

kð Þ
i ; φmin

� �
< D kð Þ

i

� 	ζ
φ

kð Þ
i < min 1þ mð Þφ

kð Þ
i ; φmax

� �

min 1þ mð Þφ
kð Þ
i ; φmax

� �
; if D kð Þ

i

� 	ζ
φ

kð Þ
i ≥min 1þ mð Þφ

kð Þ
i ; φmax

� �

8>>>>>><
>>>>>>:

: ð22Þ

Where ζ is the damping factor and m is the move limit. In
this paper, ζ is set to 0.3, while m should be determined by
experiment (Bendsøe and Sigmund 2003). Similarly, “one-

thread-one-design variable”mode of parallelization is adopted
herein, and the procedure of the update method is given in
Table 4.

Table 5 Average time-consuming for one iteration of TO process in the
cantilever problem (unit: s)

Type Elements DOFs Stage CPUM CPUc CPUMP GPUcuda

1 32*16 1,224 S1 0.43 0.37 0.47 0.06

S2 0.73 0.44 0.74 0.09

S3 0.04 0.06 0.06 0.03

S4 0.09 0.07 0.07 0.04

2 64*32 4,488 S1 1.63 1.14 1.25 0.15

S2 4.15 2.17 2.73 0.29

S3 0.21 0.22 0.21 0.06

S4 0.32 0.32 0.36 0.07

3 128*64 17,160 S1 6.4 3.57 3.53 0.34

S2 27.7 11.3 10.6 0.95

S3 1.1 0.9 0.8 0.14

S4 1.5 1.4 1.4 0.17

4 256*128 67,080 S1 44.9 14.6 13.2 0.79

S2 213.9 63.4 64.5 3.2

S3 5.7 3.9 3.3 0.32

S4 8.2 7.2 6.5 0.42

5 512*256 265,224 S1 318 75.3 69.7 2.4

S2 1963 378 457 10.8

S3 32.4 21.6 16.4 0.81

S4 52.3 36.4 31.9 1.2

6 1024*512 1,054,728 S1 2329 413 389 7.9

S2 22,638 2344 3564 35.7

S3 176 113 93.4 2.3

S4 384 183 169 3.7

S1 represents the stage of initial design domain. S2 indicates the process of
assembling the stiffness matrix K for IGA. S3 is the stage of sensitivity
analysis. S4 represents the update scheme procedure

Input Data

Optimal Topology

Convergence

criterion

Initial desig domain

M

S1

C MP CUDA

Isogeometric AnalysisS2

Sensitivity AnalysisS3

The update schemeS4
M C MP CUDA

M C MP CUDA

M C MP CUDA

Fig. 19 TO implementing with different language
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The multiplication calculation in Line 13 of Table 4
can be parallelized with “one-thread-one-row” mode as
shown in Fig. 17, then the vector of LSFs Φ can be
obtained.

6 Numerical examples

The performance of the proposed parallel TO algorithm inte-
grating IGA and NURBS-based parameterized LSM is veri-
fied through three benchmarks: the cantilever beam problem,

the Messerschmidt-Bölkow-Blohm (MBB) beam problem,
and the quarter annulus problem. The default parameters of
these tests are as follows: the elastic modulus for the solid
material is 1.0 and for the weak material, 0.0001. The
Poisson’s ratio is 0.3. The terminal criterion is the relative
difference of the objective function values between two itera-
tions, which is set to 0.0001. The 3×3 Gauss quadrature rule
is used for the quadratic isogeometric elements. The volume
ratio, i.e., material usage ratio, is limited to 0.5. All examples
were implemented on a machine with the following hardware:
the CPU is an Intel core E5 2630 v2 2.6GHz, the RAM is

(a) Initial design domain. (b) Assembly stiffness matrix K.

(c) Sensitivity analysis. (d) The update scheme.

Fig. 20 Time consuming and speedup ration in TO processes. a Initial design domain. b Assembly stiffness matrix K. c Sensitivity analysis. d The
update scheme

Table 6 Speedup for one iteration of the topology optimization in the cantilever problem

GPU/CPU-MATLAB GPU/CPU-C GPU/CPU-MP

S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

1 7.17 8.11 1.33 2.25 6.17 4.89 2.00 1.75 7.83 8.22 2.00 1.75

2 10.87 14.31 3.50 4.57 7.60 7.48 3.67 4.57 8.33 9.41 3.50 5.14

3 18.82 29.16 7.86 8.82 10.50 11.89 6.43 8.24 10.38 11.16 5.71 8.24

4 56.84 66.84 17.81 19.52 18.48 19.81 12.19 17.14 16.71 20.16 10.31 15.48

5 132.50 181.76 40.00 43.58 31.38 35.00 26.67 30.33 29.04 42.31 20.25 26.58

6 294.81 634.12 76.52 103.78 52.28 65.66 49.13 49.46 49.24 99.83 40.61 45.68
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DDR3 SDRAM (16GB), the OS is Windows 8.1 64-bit.
The GPU is NVIDIA Quadro K5000, which contains 8
streaming multiprocessors and 1536 CUDA cores. The
compilers for CPU codes are Mathworks MATLAB
2014 (Natick, Massachusetts, USA) and Microsoft
Visual Studio 2010 (Redmond, Washington, USA), and
the compiler for GPU code is NVIDIA CUDA 7.0. All
CUDA kernel routines of the proposed approach are
developed from scratch by the authors.

6.1 Cantilever beam

The cantilever beam, as a benchmark problem, is commonly
used to evaluate TO methods (Wang and Benson 2015a, b).
The design domain of the cantilever beam and its size are
shown in Fig. 18a. The dimensionless quantity calculation is
adopted, and L is set to 1. The distribution of initial holes is
shown in Fig. 18b, which are same as that used by other
researchers (Luo et al. 2007, 2009; Wang and Benson
2015a, b).

To demonstrate the speedup of the GPU implementation,
the cantilever beam problem is solved by modifying
discretization with different quadratic NURBS elements.
Table 5 shows the results for different sizes of the cantilever
beam problem. Since no reinitialization is needed, the initial
design domain will just be executed once in the TO processes,
while IGA, sensitivity analysis and the update scheme will be
iteratively executed in the solving processes. To compare ef-
ficiency among different environments, MATLAB (M), C,
MATLAB with parallel (MP) and CUDA C are used in this
work as shown in Fig. 19.

The average computational time of one iteration is given in
Table 5. When the scale of the problem is small (e.g., 32*16),
the consuming time of MATLAB with built-in parallel is larg-
er than MATLAB, since the time cost in data transmission
may be larger than that in computation. Similarly, the time
spending in CUDA are more than C language when the cal-
culating problem is very small. When the scale is more than 1
million, each step will take several hours with CPU comput-
ing, while it just needs tens of seconds under CUDA
environment.

The speedup ratios among GPU computing and the others
are listed in Table 6. The speedups of CUDA toMATLAB are
from 1.44 to 691.44, while CUDA to C from 0.66 to 109.32,
CUDA to MP from 4.11 to 145.26 for the different scale
problems, which demonstrates the high efficiency of the pro-
posed parallel isogeometric TO. Compared with C, MATLAB
has a slower speed to compute in this work. Therefore, the
speedup ratio of CUDA to MATLAB can up to nearly 700

(a) CPU with 32*16 elements (b) GPU with 32*16 elements

(c) CPU with 64*32 elements (d) GPU with 64*32 elements

(e) CPU with 128*64 elements (f) GPU with 128*64 elements

(g) CPU with 256*128 elements (h) GPU with 256*128 elements

(i) CPU with 512*256 elements (j) GPU with 512*256 elements

(k) CPU with 1024*512 elements (l) GPU with 1024*512 elements

Fig. 21 TO results of cantilever beam problem with different NURBS
elements. a CPU with 32*16 elements. b GPU with 32*16 elements. c
CPU with 64*32 elements. d GPU with 64*32 elements. e CPU with
128*64 elements. f GPU with 128*64 elements. g CPU with 256*128
elements. hGPU with 256*128 elements. i CPUwith 512*256 elements.
j GPU with 512*256 elements. k CPU with 1024*512 elements. l GPU
with 1024*512 elements

Table 7 Final convergent objetive function values for different DOFs
of the cantilever problem

Number of NURBS
elements

Final convergent objective function value

CPU GPU

32*16 58.992 58.997

64*32 58.991 58.719

128*64 59.946 59.864

256*128 60.871 60.559

512*256 60.589 60.845

1024*512 60.723 60.962
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times. Meanwhile, there are some scholars contributing efforts
to parallel algorithms for TO processes (Challis et al. 2014;
Duarte et al. 2015; Zegard and Paulino 2013) with speedups
less than 14, and IGA computation (Karatarakis et al. 2014)
with speedup of nearly 90.

Figure 20 shows the time consuming and speedup ratios for
initial design domain, assembling the stiffness matrix K of
IGA, sensitivity analysis and the update scheme. It is observed
that the performance of the GPU implementation with a small
scale problem is not superior, especially compared with C.
However, increasing the number of elements, the powerful
computational ability is gradually reflected by the increasing
speedups. When the DOFs is large enough, the computing
capability of GPU can be fully utilized.

The TO results of the cantilever beam problem are shown
in Fig. 21 with different mesh scales, and the objective func-
tion values are a little different when the TO algorithm con-
verges, which are listed in Table 7. The accuracy of the objec-
tive function values under GPU parallel computing are

consistent with CPU computing. With the scale increasing,
the topology is basically unchanged, but it is not sufficient
to represent the precise structure when the mesh number is
small.

The comparisons of the time-consuming ratios in IGA pro-
cesses are shown in Fig. 22. The time of the assembling the
stiffness matrix processes is much more than solving in CPU.
However, the solving time in GPU is just a little less than
assembling the stiffness matrix since the serial solver and
CUDA-parallel matrix assembly are used in the GPU scheme.
The comparisons show the significant acceleration of CUDA
parallel strategy for IGA process.

6.2 MBB beam

Figure 23 defines the design domain of a typical
Messerschmidt-Bölkow-Blohm (MBB) beam, which is a
widely used benchmark in TO. The allowed material usage

CPU

GPU

(f)

(g) (h) (i) (j)

(a) (b) (c) (d) (e)

(k) (l)

Fig. 22 Consuming time ratio in IGA process with different number of
elements: (a) CPUwith mesh 32*16, (b) CPUwith mesh 64*32, (c) CPU
with mesh 128*64, (d) CPU with mesh 256*128, (e) CPU with mesh
512*256, (f) CPU with mesh 1024*512, (g) GPU with mesh 32*16, (h)

GPU with mesh 64*32, (i) GPU with mesh 128*64, (j) GPU with mesh
256*128, (k) GPU with mesh 512*256, (l) GPU with mesh 1024*512,
(m) GPU with mesh 1024*512

Design domain

3L 3L

L

F

(a) Design domain.

R=0.1

(b) Distribution of initial holes.

Fig. 23 Design domain and
initial holes of the MBB beam
problem. a Design domain. b
Distribution of initial holes
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is limited to 50%. The beam length and width size ratio is 6:1
with a width of L=1. The domain is initialized with 47 holes.

Move limit controls the changes that can happen at each
iteration step and are chosen by experiments. For example, a
typical useful value of move limit is 0.2 for density topology
optimization (Bendsøe and Sigmund 2003), but for level set
topology optimization, the move limit usually is smaller (e.g.,
0.01 in (Luo et al. 2008)). By experiments, the suitable move
limit m is set to 0.02, 0.03, 0.05, 0.08 and 0.10 respectively
with increased elements, and the filter radius is the same for all
examples herein. The number of iterations and the TO results
corresponding to Fig. 23 are shown in Fig. 24. The design
domain is discretized with different quadratic NURBS ele-
ments. The optimal design is obtained after different iterations
under CPU and GPU environments. When the mesh is less, it
is not enough to describe a precise structure.When the mesh is
adequate, the optimal result would be obtained, and then the

(b) 96*16 elements with GPU (Number of iterations=37). 

(c) 192*32 elements with CPU (Number of iterations=86). 

(d) 192*32 elements with GPU (Number of iterations=78). 

(e) 384*64 elements with CPU (Number of iterations=83). 

(f) 384*64 elements with GPU (Number of iterations=89). 

(g) 768*128 elements with CPU (Number of iterations=87). 

(h) 768*128 elements with GPU (Number of iterations=89). 

(i) 1536*256 elements with CPU (Number of iterations=67). 

(j) 1536*256 elements with GPU (Number of iterations=74). 

(a) 96*16 elements with CPU (Number of iterations=34). 

Fig. 24 Design domain and initial holes of the MBB Beam problem. a
96*16 elements with CPU (Number of iterations = 34). b 96*16 elements
with GPU (Number of iterations = 37). c 192*32 elements with CPU
(Number of iterations = 86). d 192*32 elements with GPU (Number of
iterations = 78). e 384*64 elements with CPU (Number of
iterations = 83). f 384*64 elements with GPU (Number of
iterations = 89). g 768*128 elements with CPU (Number of
iterations = 87). h 768*128 elements with GPU (Number of
iterations = 89). i 1536*256 elements with CPU (Number of
iterations = 67). j 1536*256 elements with GPU (Number of
iterations = 74)

(a) 384*64 elements with 47 holes

(b) Topology result with 384*64 elements under 47 holes (Number of iterations=83)

(c) 384*64 elements with 13 holes

(d) Topology result with 384*64 elements under 13 holes (Number of iterations=107)

(e) 768*128 elements with 47 holes (Number of iterations=87)

(f) Topology result with 768*128 elements under 47 holes

(g) 768*128 elements with 13 holes

(h) Topology result with 768*128 elements under 13 holes (Number of iterations=112)

Fig. 25 Optimal results with different elements and initial holes. (a)
384*64 elements with 47 holes. b Topology result with 384*64
elements under 47 holes (Number of iterations = 83). c 384*64 elements
with 13 holes. d Topology result with 384*64 elements under 13 holes
(Number of iterations = 107). e 768*128 elements with 47 holes (Number
of iterations = 87). f Topology result with 768*128 elements under 47
holes. g 768*128 elements with 13 holes. h Topology result with
768*128 elements under 13 holes (Number of iterations = 112)
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increased mesh would not change the result’s shape, since
there is no mesh dependency.

Different number of initial holes on the design domain
would obtain the similar topology, but different convergence
speed as shown in Fig. 25.

6.3 Quarter annulus

Figure 26 defines the design domain of a quarter annulus, and
the proposed TOmethod is used to optimize a quarter annulus.
The equal-interval initial holes are distributed in the design
domain as shown in Fig. 26b. A mesh of 64×64 quadratic
NURBS elements is used for both CPU and GPU computing,
and the shape and size of the NURBS elements are different in
this problem. When a mesh of 512*512 quadratic NURBS
elements (DOFs are 528,392) is adopted to this problem, the
consuming time of one iteration in the IGA-based TO process
using CUDA is approximately 80 s, while it costs nearly ten
hours for CPU implementation with MATLAB.

The objective function and the volume ratio over the iterations
for both CPU and GPU are given in Fig. 27. The objective
function values are very large at the beginning of the optimiza-
tion, and then decreases to a normal value during the TO pro-
cesses. The convergence criterion are the same for CPU and
GPU computing in this problem. The iterative solution is stopped

(a) CPU (b) GPU

Fig. 27 Convergent histories of the quarter annulus. a CPU. b GPU

F=1

Ro
ut

=
2

Rin=
1

O

R=0.1

(a) Design domain. (b) Distribution of initial holes.

Fig. 26 Design domain and
initial holes of the quarter
annulus. a Design domain. b
Distribution of initial holes

(a) CPU. (b) GPU.

Fig. 28 Optimization results of the quarter annulus. a CPU. b GPU
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in the 144th iteration for CPU computing while 72th iteration for
GPU computing with 64*64 NURBS elements. The TO results
for both CPU and GPU computing are shown in Fig. 28. The
difference between them is small.

To discuss solving error in different environments (CPU
and GPU), the relative error of the objective function values
between CPU and GPU is compared, which can be defined as:

ε ¼ JCPU−JGPUk k2
JCPUk k2

; ð22Þ

in which JCPU represents the objective function obtained
from CPU computing while JGPU indicates the objective func-
tion from GPU parallel computing, ε is the relative error be-
tween CPU and GPU.

The relative errors of the first 72 times are shown in Fig. 29,
which shows a decreased tendency in the first 2 times since the
objective function of both CPU and GPU are very large at the
beginning of the optimization. In the 2–4 iteration, the relative
errors increases in a sharp tendency because the convergence of
single precision (used in GPU) is faster than double precision
(used in CPU), but this does not mean that a single-precision has
a better convergence than double precision. When the shape
reaching a stable line with only minor changes, the objective
function of CPU andGPUwill be approximative, and the relative
error between CPU and GPU becomes smaller.

7 Discussion and conclusions

A GPU implementation is applied to the isogeometric TO
method integrating the IGA and the parameterized LSM,
which greatly improve the computational efficiency compared

with CPU. The GPU parallel strategy shows significant
speedups (more than 100 for some cases) for initial design
domain, stiffness matrix assembly, sensitivity analysis and
the update scheme in the TO processes.

A cantilever beam example with different scales of meshes
is used to validate the high efficiency of GPU parallel strategy
for parameterized LSM-based TO using IGA by comparing it
to that of CPU. A MBB beam example was used to analyze
the influence of the mesh scale on the optimal topology.
Furthermore, a quarter annulus example with curve-
boundary design domain was used to discuss the relative er-
rors between CPU and GPU, and the consuming time of one
iteration on only one GPU with over 500 thousand DOFs
problem is within 80 s. The examples illustrate that GPU
can effectively solve TO problems.

Although the focus of the present paper is the minimum
compliance problem of TO, the proposed parallel strategies
will not be restricted to this specific problem, and it can be
extended to deal with other problems. Moreover, it can be
further improved in many aspects: e.g., multiple GPU devices
and distributed parallel computing with MPI. Besides that,
another forthcoming work is to extend these strategies to
three-dimensional problems.
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