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Abstract One of the major goals of isogeometric analy-
sis is direct design-to-analysis, i.e., using computer-aided
design (CAD) files for analysis without the need for mesh
generation. One of the primary obstacles to achieving this
goal is CADmodels are based on surfaces, and not volumes.
The boundary element method (BEM) circumvents this dif-
ficulty by directly working with the surfaces. The standard
basis functions in CAD are trimmed nonuniform rational B-
spline (NURBS). NURBS patches are the tensor product of
one-dimensional NURBS, making the construction of arbi-
trary surfaces difficult. Trimmed NURBS use curves to trim
away regions of the patch to obtain the desired shape. By
coupling trimmed NURBS with a nonsingular BEM, the for-
mulation proposed here comes close achieving the goal of
direct design to analysis. Example calculations demonstrate
its efficiency and accuracy.

Keywords Isogeometric analysis · Boundary element
method · Nonsingular integration · Trimmed elements ·
Quadrature design

1 Introduction

Isogeometric analysis (IGA) [16,33] combines the varia-
tional framework of the finite element method (FEM) [34]
with the basis functions used in computer-aided design
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(CAD), e.g., nonuniform rational B-splines (NURBSs) [56].
This methodology has been successfully applied to a variety
of domains, e.g., structural vibration [17], electromagnetics
[15], fluids [1,7], fluid–structure interaction [6,8,32], phase
field analysis [13,43], contact [48,72], fracture [18], shape
optimization [2,57], topology optimization [19,67], cables
and shells [10–12,58].

Building complicated geometries with the restrictive ten-
sor product structure of NURBS is every bit as difficult as
building them for logically regular meshes used by finite
difference methods. In fact, the difficulty of meshing compli-
cated geometries is one reason why finite difference methods
were replaced by the FEM with its unstructured meshes. A
natural direction of research is therefore the development
of basis functions that have the smoothness of NURBS and
the unstructured meshes of piecewise continuous polynomi-
als. Among the most popular candidate basis functions are
T-splines [66], which have been used successfully in IGA
[5,63,64].Competitors toT-splines for analysis includePHT-
splines [53,75], hierarchical B-splines or NURBS [62,73]
and Powell–Sabin splines [30,31] among many others.

TrimmedNURBS are the most common approach for cre-
ating complicated geometries in CAD. Curves define the
domain to be kept on a NURBS patch, and the remainder
is trimmed away and discarded. A state-of-the-art large-
scale CAD model may be built from dozens or hundreds
of trimmed surfaces that are connected along non-matching
boundaries and trimming curves [61]. Since the trim curves
can cut through the elements in an arbitrary manner, the
geometries of the trimmed elementsmaybe irregular,making
their implementation challenging within a traditional finite
element framework.

Kim et al. [37] first presented trimmed surfaces based
in a NURBS-enhanced FEM [68]. The trimmed elements
are decomposed into simple geometries, i.e., triangles or
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quadrilaterals with at most one trimmed curve side, and a
projection scheme is used to map the simple geometries to
regular geometries, and standard quadrature rules are used for
integration. Later, Kim et al. [38,67] improved their method
and applied it to topology optimization. Complicated ele-
ments may be generated when they are trimmed by multiple
curves, and a quadtree refinement was used to recursively
refine them, greatly increasing the number of integration
points.

Ruess et al. [60] used a reduced integration approach
to trimmed elements for a finite cell method. They used
quadtree refinement to subdivide trimmed elements. Their
modified Gauss quadrature used only the Gauss points inte-
rior to the trimmed elements. This method increases the
number of integration points, and the finite cell method usu-
ally cannot exactly represent the smooth boundary of the
geometry. Wang et al. [77] classified the types of trimmed
elements and proposed different integration schemes to avoid
using local quadtree refinement, but their method adds the
complexity of identifying the different types of trimmed
elements and requires the decomposition of the pentagonal
and hexagonal trimmed elements into elements with simpler
shapes.

Nagy and Benson [51] recently proposed an algorithm
based on optimization to construct efficient quadrature rules
for trimmed elements of arbitrary shape and topology. The
integration rule is unique to a trimmed element and it is opti-
mal within the trimmed domain up to a predefined tolerance.
This method is used here for the numerical integration of
trimmed elements.

CAD uses a boundary representation for volumes, i.e.,
volumes are defined in terms of their exterior surfaces, and
these surfaces are defined in terms of trimmed NURBS that
are usually not compatible in terms of their knot vectors.
Generating a three-dimensional volumetric model from the
CAD surface definitions has been a challenge [26,46]. The
boundary element method (BEM) [3,4], unlike traditional
FEMs, only requires surfacemeshes for the analysis of solids,
making it attractive for IGA [25,55,65,69,70]. Although
combining BEM with IGA offers many opportunities, it
still faces the usual challenge in BEM of integrating sin-
gular and nearly singular integrals and the usual challenge
of using NURBS in IGA for the analysis of complicated
topologies.

The fundamental solutions in the BEM usually contain
O(1/rα) terms resulting in nearly singular and singular
integrals that cannot be accurately evaluated by standard
Gaussian quadrature. One approach uses special techniques
to accurately evaluate these integrals, e.g., analyticalmethods
[27,28], degenerate mapping methods [41], radial integra-
tion methods [22,23] and non-linear transformation methods
[71,81] for singular integrals, and domain division methods
[9,24], semi-analytical and analytical methods [54,82] and

a series of transformation methods [35,49,50,79,80] for the
nearly singular integrals. These methods only work for sim-
ple shapes such as triangular and quadrilateral elements, and
therefore they cannot be used in irregular trimmed elements.
The other approach constructs weakly-singular or nonsingu-
lar boundary integral equations (BIEs) by a series of algebraic
operations, so that standard quadrature rules can be used for
element integration. Rizzo and Shippy [59] first presented
a weakly-singular form by expressing the free term coeffi-
cient matrix C i j obtained through the rigid body translation
solutions on the BIE. Liu et al. [44,45,47] proposed several
identities for the fundamental solutions and applied them to
weakly-singular and nonsingular BEMs. In recent years, a
new nonsingular BEM was developed by Klaseboer et al.
[39,40]. It was extended to single-patch IGA for 3D Stokes
flow by Heltai et al. [29] to demonstrate the validity of the
nonsingular IGABEM.

In this paper, we present a nonsingular IGABEMbased on
a previous nonsingular BEM [47], and combine it with the
quadrature rules for trimmed elements [51] to implement a
multi-patch nonsingular IGABEM with trimmed elements.
The paper is organized as follows: in Sect. 2, the use of
trimmed NURBS in IGA is briefly reviewed. The numerical
integration of trimmed isogeometric elements is summarized
in Sect. 3. The nonsingular IGABEM is presented in Sect. 4.
Numerical examples are shown in Sect. 5. Finally, conclu-
sions and future research are discussed in Sect. 6.

2 IGA using trimmed NURBS

Trimmed NURBS surfaces, which consist of untrimmed
NURBS surfaces and trimming curves, play an important
role inCADsystems.Complex geometries are typically com-
posed of several trimmed surfaces since adding features (e.g.,
fillets and holes) to a geometricmodel are commonly done by
trimming in CAD software. Note that the parameterization
of NURBS surfaces remains unchanged, and the parts of the
surface outside of the trim curves are simply not displayed.
In order to identify which part is trimmed, an orientation rule
for the trimming curves is defined, e.g., the trimmed region
is to the right of the direction of the increasing knot values
and the remaining region is to the left [38].

In general, NURBS surfaces and trimming curves are
defined by different parameter sets (ξ, η) and (τ ), respec-
tively. For example, a NURBS surface S(ξ, η) and a trim-
ming curve C(τ ) are described as

S(ξ, η) =
n∑

i=1

m∑

j=1

Ni, j (ξ, η)P i, j , (1)

C(τ ) =
m∑

k=1

Nk(τ )Pk, (2)
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(a) (b) (c)

Trimmed elements

Fig. 1 Different models in IGA: a CAD model, b multi-patch analysis suitable model and c trimmed NURBS model

where Ni, j (ξ, η) and Nk are the rational basis functions of
the surface and the curve, respectively, and P i, j and Pk

are the corresponding control points. In order to describe
a trimmed surface, the curve is expressed in terms of under-
lying surface as

Sc(ξ(τ ), η(τ )) =
n∑

i=1

m∑

j=1

Ni, j (ξ(τ ), η(τ ))P i, j . (3)

Since there is no analytical relationship between parameter
sets (ξ, η) and (τ ), a proper parametric representation of the
curve in the parametric domain of the underlying NURBS
surface is not possible.

In conventional IGA with NURBS patches, a model with
complex topology is manually divided into multiple tensor
product patches. For example, the analysis suitablemodel for
the geometric model in Fig. 1a is constructed of four NURBS
patches as shown in Fig. 1b. IGA requires a certain level of
continuity to be maintained between adjacent patches (e.g.,
common control points), but it is not easy to implement
this requirement in CAD systems. Moreover, the continu-
ity between the adjacent elements of neighboring patches is
reduced to C0. If the analysis model uses the trimming oper-
ations as illustrated Fig. 1c, the continuity problem can be
solved. However, this trimmed model introduces the chal-
lenge of integrating the trimmed elements, a key issue for
IGA based on trimmed NURBS.

3 Integration on the trimmed elements

There are a number of ways of performing quadrature on a
trimmed NURBS surface. Most of them are efficient enough
for problems where the integration is only performed once,
e.g., a linear structural analysis where each element is inte-
grated only once. In BEM, the integration over an element is
performed roughly once for every node in the problem, and
therefore efficiency is critical. This concern for efficiency
motivated the choice of using a highly efficient integration
method [51] for the repetitive evaluation of element inte-

grals in IGA applications using explicit time integration for
structural dynamics. The method is summarized here; for
additional details, the interested reader is referred to [51].

3.1 Function space and the moment fitting equations

Basic splines are piecewise polynomials constructed as a
weighted sum of monomials,

B(ξ) =
m∑

i=1

ci fi (ξ), (4)

where ξ = (ξ1, . . . , ξn) are the parametric coordinates in n
dimensions, and ci and fi are the ith coefficient and mono-
mial. The function space F for the tensor product spline
polynomials consists of the set of all monomials ξ r1 ξ s2 such
that 0 ≤ r, s ≤ p, where p is the degree of the spline in one
dimension.

The standard form of a numerical integration formulation
may be written as
∫

Ω

f (ξ)dξ ≈
m∑

i=1

wi f
(
ξ i
)
, (5)

where Ω ∈ R
n is the domain of integration, and f is the

integrand. The symbols ξ i and wi denote the ith quadrature
point and the weight.

When a predefined function space F(Ω) is chosen, inte-
gration rules are constructed to satisfyEq. (5) for all functions
f j ∈F with j = 1, . . . ,m. For the purpose of this, we need
to solve the set of moment-fitting equations that are linear in
the weights and nonlinear in the locations of the quadrature
points ξ i

⎛

⎜⎜⎜⎜⎝

∫
Ω

f1(ξ)dξ
∫
Ω

f2(ξ)dξ

...
∫
Ω

fn(ξ)dξ

⎞

⎟⎟⎟⎟⎠
=

⎡

⎢⎢⎢⎢⎢⎢⎣

f1(ξ1) f1(ξ2) · · · f1(ξm)

f2(ξ1)
. . .

...

fn(ξ1) · · · fn(ξm)

⎤

⎥⎥⎥⎥⎥⎥⎦

⎛

⎜⎜⎜⎜⎝

w1

w2

...

wm

⎞

⎟⎟⎟⎟⎠
.

(6)
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Fig. 2 Approximation of the
trimmed domain: domain with
a initial and b refined trimming
curves in the physical space, and
c the approximated trimmed
elements in the parametric space
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The above relation may be described in a compact form as

g(x) = fc − f (x) = 0, (7)

where the R
n vectors f c and f represent the left and

right hand side terms in Eq. (6). Moreover, the symbol x ∈
R
m(n+1) designates the collection of quadrature points and

corresponding weights, i.e., x = {xi |i = 1, . . . ,m} where
xi = (ξ1i , . . . , ξni , wi ) is referred to as a design point.

3.2 The domain of trimmed elements

A trimmed element may consist of several curves inter-
secting the four edges of the element and each other.
To simplify the computational geometry, the domain of a
trimmed element is approximated as a polytope in the para-
metric space generated by a two step process. In the first
step, h-refinement is applied to the trimming curves, and
improves the approximation quality of the respective con-
trol polygons. Note that as the refinement becomes finer,
the control polygon moves closer to the curve. In prac-
tice, knot insertion can be performed such that the control
polygon associated with the refined curve approximates
the curve itself up to machine tolerance. In the second
step, the control polygons are pulled back to the paramet-
ric space using the point inversion (projection) algorithm
[56]. Assuming an image of the control polygon in the
parametric space is closed (noted as Pi ), the domain of a
trimmed element Ωe is easily defined by taking the dif-
ference of the untrimmed knot span Ωe

0 and the trimming
polygons as

Ωe = Ωe
0 \ (∪iPi ) . (8)

A simple two-dimensional example is illustrated in Fig. 2.
For improved visibility, the trimming curve is only modestly
refined here.

3.3 Quadrature design on trimmed elements

Once the trimmed elements are represented as Eq. (8), the left
hand side terms in Eq. (7) are evaluated using Lasserre’s the-
orems [42] to provide reference values for the integrals of the
monomials when the element domain is a convex polytope.
If the element domain is non-convex, the original polytope
may be partitioned into convex sub-polytopes, or convex hull
generation and vertex elimination may be used to compute
the integrand [51].

Given an initial set of quadrature points and weights, the
algorithm approximates the solution of Eq. (7) in the least
squares sense. The quadrature points in the minimum norm
solution are classified and the point with the lowest rank is
eliminated. This reduced set of points is used to reinitial-
ize the non-linear equation solver in the next iteration. The
process continues until the integration rule with the lowest
number of points is found that satisfies the moment fitting
equation up to a predefined tolerance. For more details of the
algorithm, the reader is referred to [51].

4 Nonsingular IGABEM for three-dimensional
elastostatics

4.1 Boundary integral equation

This section provides a brief review of the standard BIEs to
establish notation; a complete presentation with their deriva-
tion may be found in any textbook on BEM, e.g., [9]. In this
work, the summation convention is used for repeated lower-
case Latin indices unless explicitly indicated otherwise.

For a physical domain with a boundary Γ discretized into
M elements, assuming each element contains A nodes and
the body forces are zero, the discrete BIE of elastostatics
associating to a source point (i.e., collocation point) s may
be formulated as
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Ci j (s)u j (s) +
M∑

e=1

A∑

α=1

ueαj Heα
i j (s, x)

=
M∑

e=1

A∑

α=1

teαj Geα
i j (s, x), (9)

and

Geα
i j (s, x) =

∫

Γe

Ui j (s, x)Neα(x)dΓ (x), (10)

Heα
i j (s, x) =

∫

Γe

Ti j (s, x)Neα(x)dΓ (x), (11)

where x is a field point, i.e., integration point, ueαj and teαj
are the jth component of the displacement and traction of the
αth node of element e, Neα(x) is the shape function of the
αth node of element e at point x, and Ci j (s) is the free term
coefficient depending on the boundary geometry at point s.
Ui j (s, x) and Ti j (s, x) are the fundamental solution kernels
for 3D elastostatic problems,

Ui j (s, x) = 1

16πμ(1 − ν)r

{
(3 − 4ν)δi j + rir j

}
, (12)

Ti j (s, x) = − 1

8π(1 − ν)r2

{
∂r

∂n

[
(1 − 2ν)δi j + 3rir j

]

−(1 − 2ν)
(
ri n j − r j ni

) }
, (13)

where r = |x − s|, ri = ∂r
∂xi

, ni is the ith component of
the unit outward normal n, ν is Poisson’s ratio, μ is shear
modulus, and δi j is the Kronecker delta.

Applying Eq. (9) at each source point on the boundary and
merging the coefficients Heα

i j (s, x) and Ci j (s), the matrix
form of the BIE system can be assembled as

Hu = Gt. (14)

Assigning all the unknowns in u and t to the left hand
side, and the known ones to the right hand side, Eq. (14) may
be reassembled into the linear algebraic equation system

Aq = b, (15)

where q is the vector of unknown u and t components, A is
the associated collection of coefficients from H and G, and
b is the product of the known u and t components and their
corresponding coefficients in H and G.

The IGABEM differs from the conventional BEM in that
the summation

∑A
α=1 in Eq. (9) involves the control points

instead of nodes. Using the parametric coordinate system
(ξ, η), the displacements and tractions of a point x(ξ, η)

are evaluated from the control point values,

ui (ξ, η) =
A∑

α=1

Nα(ξ, η)uα
i , (16)

ti (ξ, η) =
A∑

α=1

Nα(ξ, η)tαi , (17)

where Nα(ξ, η) is the basis function of the αth control point
evaluated at (ξ, η).

4.2 Nonsingular IGABEM

4.2.1 Nonsingular BIE

The free term coefficient Ci j (s) in Eq. (9) may be written as
[45]

Ci j (s) = −
M∑

e=1

∫

Γe

Ti j (s, x)dΓ (x). (18)

Substituting the above equation into Eq. (9), the following
weakly-singular form of the BIE is obtained

M∑

e=1

∫

Γe

Ti j (s, x)
[
u j (x) − u j (s)

]
dΓ (x)

=
M∑

e=1

∫

Γe

Ui j (s, x)t j (x)dΓ (x), (19)

where u j (x) and t j (x) are the jth component of the displace-
ment and traction at field point x, which is evaluated by
Eqs. (16) and (17).

Applying the fourth identity for the elastostatic problems
[47] into Eq. (19), the resulting formulation is

M∑

e=1

∫

Γe

Ti j (s, x)u j,k(s) (x(x)k − x(s)k) dΓ (x)

= E jkpqu j,k(s)
M∑

e=1

∫

Γe

Uip(s, x)nq(x)dΓ (x), (20)

where E jkpq is the elastic modulus tensor, nq(x) is the qth
component of the outward normal at x, and x(x)k and x(s)k
are the kth components of the physical coordinates at x and s.

The nonsingular form of the BIE are obtained by subtract-
ing Eq. (20) from Eq. (19),

M∑

e=1

∫

Γe

Ti j (s, x)
[
u j (x) − u j (s)

− u j,k(s) (x(x)k − x(s)k)
]
dΓ (x)

=
M∑

e=1

∫

Γe

Ui j (s, x)
[
t j (x) − E jkpqu j,k(s)nq(x)

]
dΓ (x).

(21)
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Due to E jkpqu j,k = Epq jku j,k = σpq and t j = σ jknk, the
above formulation can be expressed as

M∑

e=1

∫

Γe

Ti j (s, x)
[
u j (x) − u j (s)

− u j,k(s) (x(x)k − x(s)k)
]
dΓ (x)

=
M∑

e=1

∫

Γe

Ui j (s, x)
[
σ jk(x) − σ jk(s)

]
nk(x)dΓ (x)

=
M∑

e=1

∫

Γe

Ui j (s, x)
[
t j (x) − σ jk(s)nk(x)

]
dΓ (x), (22)

where the first term and the second term are the nonsingular
form of the BIE in [47], which may be seen as a second order
truncation and a first order truncation of the Taylor’s series
expansion at point s, i.e.,O(r2) andO(r) terms, respectively.
But in the practical implementation, we prefer the third term
to the second term, since it is easier to compute t j (x) than
σ jk(x).

In the IGABEM, the key issues associated with Eq. (22)
are how to evaluate u j,k(s) and σ jk(s) from the displace-
ments and tractions of control points, which are derived in
Appendix.

Source point Element of integrationDistance

Fig. 3 An example of nearly singular integration

4.2.2 Nearly singular integration

At the sharp corners and edges of the intersecting patches,
the displacements areC0 continuous and the stresses are dis-
continuous, which means that the left hand side and right
hand side of Eq. (22) cannot be seen as the truncations of a
Taylor’s series expansion. When a source point is close to an
element belonging to a different patch, the integration of the
element is nearly singular since the ratio of point-element
distance versus element side is very small (see Fig. 3). More
details about the nearly singular integration in the BEM are
available in [9,24]. Note that there is no nearly singular inte-
gration when the source point and the element belongs to the
same patch in the nonsingular IGABEM.

For the untrimmed elements, the element subdivision
scheme [9] is one of the most effective methods and is used
herein. Figure4a is an example that an element is divided
into 16 sub-elements and 4 × 4 Gaussian quadrature rule is
used for each sub-element. For the trimmed elements, the
element subdivision scheme may be also used, but the Gauss
points need to be divided into three categories based on their
locations as shown in Fig. 4b, where Ωint is the integration
domain and Ωempty is the empty domain. The integration
points located completely inside Ωempty are not evaluated,
and the integration points on the trimming curve are evalu-
ated but the weights are reduced to half their original value.
The inspiration of the Gauss point classification comes from
the work of Ruess et al. [60]. In order to improve the effi-
ciency, the reusable intrinsic sample point algorithm [36] is
used in this work.

4.2.3 Collocation

According to a comparison of different collocation methods
in [46], Greville abscissae are the best choice for obtain-
ing accurate and stable results in IGABEM, and therefore
they are adopted here to design the locations of colloca-
tion points (source points). In the nonsingular IGABEM, the
source point outward normal needs to be evaluated [see n in

Element edge

Sub-element edge

Trimming curve

Integration point int∈Ω

Integration point ∈Ω

Integration point 
on trimming curve

(a) (b)

empty

Fig. 4 Nearly singular integration schemes for a untrimmed elements and b trimmed elements
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Eq. (36)], but it is not uniquely defined if the source point is
at a sharp edge or corner. Themethodology summarized here
is developed in detail in [74].

In order to conveniently evaluate outward normals of col-
location points and implement themulti-patch IGABEM, the
Greville abscissae are modified by moving the edge colloca-
tion points to inside the patches. First, the initial values of
the collocation points are chosen as the Greville abscissae in
the parameter space along each direction of all patches as

ξ i = 1

p

(
ξi+1 + ξi+2 + · · · + ξi+p

)
, i = 1, 2, . . . , n,

(23)

where p is the order of the NURBS basis, n is the number of
control points in ξ direction. The first and the last collocation
points of Eq. (23) are moved inside the patch by

ξ1 = ξ1 + β
(
ξ2 − ξ1

)
,

ξn = ξn − β
(
ξn − ξn−1

)
, (24)

where β (0 < β < 1) is a coefficient that defines how much
the collocation points move inside the patch.

Since some control points may be shared by multiple
patches but each collocation point only belongs to one patch,
the number of total collocation points is usually not equal to
the number of total control points when themodifiedGreville
abscissae are used.This inequalitywill result in the number of
BIEs being larger than the number of unknowns. To solve this
problem, the equations for all the collocation points related
to a single control point are merged. For example, the index
relationship (i, j, k → m) is set up for the three colloca-
tion points (CLi , CL j , CLk) that correspond to the control
point (Cm) in Fig. 5. Assume that the three BIEs in the initial
assembly of Eq. (15) corresponding to the collocation points
with respect to the αth direction are

Patch bPatch a

Patch c

Cm

CLk

CLjCLi

Control point Collocation point

Fig. 5 An example of three collocation points versus one control point

Ai1q1 + Ai2q2 + · · · + Ainqn = bi ,

A j1q1 + A j2q2 + · · · + A jnqn = b j ,

Ak1q1 + Ak2q2 + · · · + Aknqn = bk, (25)

where i = 3i + α, j = 3 j + α, k = 3k + α. Using the
index relationship (i, j, k → m), the merged BIE for the
final equation system Eq. (15) is simply the average

1

3

(
Am1q1 + Am2q2 + · · · + Amnqn

) = bm, (26)

where

Amp = Ai p + A j p + Ak p, p = 1, 2, . . . , n. (27)

If there are Q collocation points corresponding to a control
point, the number of equations in Eq. (25) should be Q and
the 1

3 in Eq. (26) should be replaced with 1
Q .

4.2.4 Lagrange multipliers to couple intersecting surfaces

There is discontinuity along the intersection curves of the dif-
ferent trimmed patches, e.g., a cut with a cylindrical cutout
given in Fig. 6. Taking the top square surface and the cylin-
drical surface as an example (see Fig. 6b), it may be observed
that the control points of the two surfaces are not contigu-
ous along their intersection (see Fig. 6c) and therefore the
continuity of the displacement along the intersection is not
guaranteed.

Lagrange multipliers are commonly used to impose con-
straints in the FEM [21,34], and they are used here to enforce
the continuity of the displacements along the intersecting
trimmed NURBS curves. Assuming a point P is on a inter-
section curve of surfaces s1 and s2, according to Eq. (16), the
constraint equation of the i-component of the displacement
is

A∑

α=1

Ns1,α
(
ξs1, ηs1

)
us1,αi −

B∑

β=1

Ns2,β
(
ξs2 , ηs2

)
us2,βi = 0,

(28)

where A and B are the number of control points that influence
point P, (ξs1 , ηs1) and (ξs2 , ηs2) are the parametric coordi-
nates of P in surfaces s1 and s2, and Ns1,α, Ns2,β , us1,αi and

us2,βi are corresponding basis functions and displacements
associating with the αth control point.

The computational procedure is:

(1) Choose one of the surfaces as the master surface and
equally sample points along the intersection curve in the
parametric space and compute their corresponding phys-
ical points.
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(a) (b) (c)

Fig. 6 A model with cylindrical cutout: a CAD model, b a pair of intersected surfaces and c control points on the top surface (orange dots for the
square patch and blue crosses for the circle). (Color figure online)

(2) Use the point inversion algorithm [56] to obtain the para-
metric coordinates of the physical points in the slave
surface, and use Eq. (28) to couple the DOFs of all the
sample points to obtain the equations

Nu = 0. (29)

If the displacement u in Eq. (29) is replaced with traction
t, Eq. (29) is a constraint equation on the traction.

(3) Adding the Lagrange multipliers, collected in vector λ,

the resulting equation system is

[
A NT

N 0

] [
u
λ

]
=
[
b
0

]
, (30)

and solving this system provides u and λ.

In Eq. (30), A and u correspond to A and q in Eq. (15).
However, vector q consists of the unknown displacements
and tractions of the control points. If the portion of u cor-
responding to N contains both displacements and tractions,
the Lagrange multiplier method may not work well because
Eq. (29) becomesmeaningless. This is a challenging problem
which needs to be addressed in future research.Another thing
that should be noted is that the Lagrange multiplier method
only couples the selected points, which is just an approxi-
mation of the enforcing continuity pointwise along the entire
intersection curve, but it has proven adequate as the example
calculations demonstrate.

Remark 1 (Thenumber of coupled points)Assume thatA and
B are the number of control points that influence the intersec-
tion curve of master surface and slave surface, respectively.
Based on our experience, setting the number of coupled
points in the range from 0.5max(A, B) tomax(A, B) gives
adequate accuracy. When more coupled points are sampled,
the accuracy does not increase but the efficiency is decreased.
A discussion about this can be found in Sect. 5.1.

Clearly the trim curve could be used as a one-dimensional
mortar “surface” in a mortar formulation [14] for tied con-
tact. In terms of direct design-to-analysis, the trim curve does
not necessarily have the appropriate number of basis func-
tions for representing theLagrangemultiplier field accurately
along the curve since it only needs to define the geometry.
Given the number of issues that have to be addressed for
using trimmed NURBS in BEM, the issues associated with
the appropriate refinement of the trim curve for an accurate
mortar formulation have been deferred to future research.

4.3 The trimming effect

The trim curves may introduce small element fragments
where the values of some of the basis functions are small,
e.g., the trimmed elements associating with the control point
A in Fig. 7. This produces a special type of error into the
numerical results of the associated control point, and this is
denoted the trimming effect here.

This problem is addressed by replacing the displacement
field in the fragment with one from an adjacent element.
Taking element e1 in Fig. 7 as an example, the point x(ξ, η)

in e1 may be represented as

φe1(ξ, η) =
A∑

α=1

Nα
e2(ξ, η)φα

e2 , (31)

where φ can be the coordinates, displacements, tractions, etc.
Element e2 is an untrimmed neighbor element of element e1
(see Fig. 7), and Nα

e2(ξ, η) is the extrapolated basis function
of element e2 at a point x of element e1. Note that e1 and e2
should belong to the same patch and some basis functions of
element e2 are equal to 0 at point x.

This approach may not work for some complex trimmed
problems, e.g., a patch trimmed by multiple curves that
results in none of the neighboring elements to the target
trimmed element being suitable for extrapolation. Future
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Fig. 7 An example of trimming
effect
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research will develop more robust strategies for addressing
this issue.

4.4 Implementation

To evaluate the equation system Eq. (15) using the nonsingu-
lar BIE, Eqs. (16), (17), (37), (43) are substituted into Eq. (22)
to obtain the BIE with respect to the displacements and trac-
tions of the control points

M∑

e=1

∫

Γe

Tlm(s, x)Nα(x)uα
m(x)dΓ (x) − Nα(s)uα

m(s)

M∑

e=1

∫

Γe

Tlm(s, x)dΓ (x)−
(
Amnjαu

α
j (s)+Bmnjαt

α
j (s)

)

M∑

e=1

∫

Γe

Tlm(s, x)x(x)ndΓ (x)

+
(
Amnjαu

α
j (s) + Bmnjαt

α
j (s)

)
x(s)n

M∑

e=1

∫

Γe

Tlm(s, x)dΓ (x)

=
M∑

e=1

∫

Γe

Ulm(s, x)Nα(x)tαm(x)dΓ (x)

−
(
Cmnjαu

α
j (s) + Dmnjαt

α
j (s)

)

M∑

e=1

∫

Γe

Ulm(s, x)nn(x)dΓ (x). (32)

Note that the terms taken outside of the integrals simplify the
implementation.

The first terms of left hand side and right hand side
(called field point term for short) in Eq. (32) are computed
in each element and then assembled into left hand side or
right hand side of the equation system Eq. (15) according to
whether uα

m(x) and tαm(x) are unknown or known. Except
for the first terms, all the other terms (called source point
term for short) consist of a polynomial with respect to the
displacements and tractions of source points (collocation
points) and an integral with respect to the field points. The
integrals are evaluated over each element and summed to
get the integral over the entire boundary Γ . The integrals
are then multiplied by the appropriate polynomial terms
and assembled into the equation system according to uα

j (s)
and tαj (s).

The trimming operationsmay generate control points with
basis functions that have zero support on the final trimmed
problem domain (see the inactive control points in Fig. 8).
These control points should be identified and eliminated from
the computation, and the collocation points corresponding to
them (such as Fig. 5) should be also ignored.

Nonsingular does not mean that the gradients of the inte-
grands are small, or that lower order Gauss integration will
accurately evaluate the integrals. The element sub-division
method [41] is therefore used to accurately evaluate the inte-
gral when the source and integration points are in the same
element (Fig. 9a), and for a trimmed element, the integral of
the trimmed element is the difference between the integral
over the untrimmed element and region outside of the trim
curve as shown in Fig. 9b.
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Active control points Inactive control points

Fig. 8 Active and inactive control points. The knot vectors in both
parametric direction are Ξ = [0, 0, 0, 1/8, 1/4, 3/8, 1/2, 5/8,
3/4, 7/8, 1, 1, 1]

(a)

(b)

Fig. 9 Integration schemes of the source and integration points in the
same a untrimmed element and b trimmed element

The procedure of the multi-patch nonsingular IGABEM
using trimmed elements is illustrated in Fig. 10.

5 Numerical examples

All examples in the sectionwere run on a desktopworkstation
with an Intel core i7 960 3.2GHz and 12GB of RAM. The
OS is Linux Ubuntu 12.04, and the compiler is gfortran. The
8× 8 Gauss quadrature rule is used for the integration of the
untrimmed elements in terms of the discussion byHeltai et al.
[29]. The quadrature design method in Sect. 3 is used for the
integration of the trimmed elements; and the nearly singular
integration scheme in Sect. 4.2.2 is used if the integration
is nearly singular. The collocation point shift coefficient β

mentioned in Sect. 4.2.3 is set to 0.5, which performs best in
our tests.

5.1 Cube with a cylindrical cutout

A unit cube with a cylindrical cutout consisting of 10 patches
(6 for the cubic surfaces and 4 for the cylindrical surfaces)
is subjected to a perpendicular traction T on its top surface.
The top and the bottom surfaces are trimmed by a circle with
a diameter of 0.4. The model and the boundary conditions
are illustrated in Fig. 11. Young’s modulus, E, is 104, and
the Poisson’s ratio, ν, is 0.3. In this model, the analytical
solutions of the displacement in x, y and z direction of a point
s on the boundary surfaces are T ν/E · x(s), T ν/E · y(s) and
T ν/E · z(s), and the stress in z direction is T.

Meshes of 2 × 2, 4 × 4, 6 × 6 and 8 × 8 quadratic and
cubic (p = 2 and 3) 2D NURBS boundary elements for
each trimmed patch are used in the computations and shown
in Fig. 12, where the cylindrical surface is divided into four
patches consisting of 1×2, 2×4, 3×6 and 4×8 elements.
The knot vector spans are equally spaced in each direc-
tion. Twelve points along the trimming curve are selected
to enforce the displacement continuity with Lagrange multi-
pliers as shown in Fig. 14a. Only the mean relative error and
the maximum relative error (shortened to the mean error and
max error below) of the displacement components in Table1
(excluding the mesh points in the trimmed domain) are
included in the error norms since the other displacement com-
ponents are assigned as boundary conditions. When a point
is shared by several surfaces, only the common displacement
components of those surfaces in Table1 are compared.

Denoting h as the characteristic size of the elements and
h0 as the characteristic size of Mesh 1 (see Fig. 12a), the
discretization ratio h/h0 ranges from 1 to 0.25 for Meshes
1–4, and the corresponding mean and the max errors of the
displacements are shown in Fig. 13. The results show that
refinement improves the numerical accuracy and a higher
accuracy is achieved for the elements of the same size as p
increases. The result for p = 2 violates the convergence trend
when h/h0 = 0.25. The primary reason for this is the num-
ber of points enforcing the continuity must increase with the
mesh refinement because the number of control points cor-
responding to the intersecting curves will increase with the
mesh refinement. Given two intersecting patches of degree
p, the expected number of control points on each patch for
constraining a point is expected to be less than or equal to
(p + 1)2. However, too many constraints may result in an
over constrained problem since the number of constraints is
larger than that of the associated control points. In our experi-
ence, when the number of constraints is greater than twice of
the number of associated control points, the over constrained
problems may occur. A detailed discussion about the rela-
tionship between the accuracy and the number of coupled
points is presented as follows.

Meshes 1 and 4 of p = 2 are chosen as examples to
evaluate the impact of the number of coupled points on
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Fig. 10 Flowchart of the multi-patch nonsingular IGABEM using trimmed elements

Fig. 11 A unit cube with a
cylindrical cutout

x y

z

x = 1 surface
tx = 0
ty = 0
tz = 0

x = 0 surface
ux = 0
ty = 0
tz = 0

y = 0 surface
tx = 0
uy = 0
tz = 0

y = 1 surface
tx = 0
ty = 0
tz = 0

z = 0 surface
tx = 0
ty = 0
uz = 0

z = 1 surface
tx = 0
ty = 0

  tz = 10

T = 10

O

123



184 Comput Mech (2015) 56:173–191

(a) (b) (c) (d) 

Fig. 12 Meshes of the cube model with a cylindrical cutout

Table 1 Compared displacement components of different surfaces
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surface
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surface

ux ux ux ux ux

uy uy uy uy uy
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the accuracy. Figure14 gives four different coupled point
distributions from sparse to dense, and Fig. 15 shows the cor-
responding mean and max errors. When the distribution of
coupled points is sparse, increasing the number of coupled
points improves the accuracy until the number reaches a cer-

tain point. Increasing the number of coupled points further
will not improve the accuracy, and even may a little lower
it. In Sect. 4.2.4, it was estimated that the number of cou-
pled points may be set in the range from 0.5max(A, B)

to max(A, B), where A and B are the number of control
points that influence the intersection curve of master sur-
face and slave surface, respectively. As shown in Fig. 15,
36 coupled points are enough to guarantee the overall accu-
racy of the solution (each patch of the cylindrical surface
has 9 control points influencing a quarter of the trimming
circle).

The displacement results for Mesh 4 with p = 2 and 36
coupled points per trimming curve (Fig. 14c) are shown in
Fig. 16, where the number of control points is 688 and the
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Fig. 13 Errors versus characteristic mesh parameter

(a) (b) (c) (d) 

Fig. 14 Coupled points along the trimming curve
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Fig. 15 Errors of different coupled point distribution

number of elements is 512. The mean error and the max
error between the results of the nonsingular IGABEM with
trimmed elements and the analytical solutions are 2.298 ×

10−4 and 6.153 × 10−3. Note that their percent error are
approximately 0.02 and 0.6%, respectively, which proves
the high degree of accuracy with the nonsingular IGABEM
formulation.

5.2 Error analysis of the trimming effect

A unit cube with a cuboid cutout (see Fig. 17) is a convenient
model problem for analyzing the trimming effect. The bound-
ary conditions and material parameters are the same as the
model in Fig. 11. Note that Fig. 17c is actually the example
in Fig. 7. The displacements of the selected control points
A–trimming effect. Of particular interest is how the errors
vary with the thickness ratio l/ l0 of the trimmed elements at
control points A–F.

In contrast to the other calculations, linear basis functions
are used in this example to demonstrate that the trimming
effect is not caused by the use of the NURBS basis func-
tions in IGA. The displacements at the nodes are therefore
the nodal values of the displacements, unlike in the other
examples using quadratic and higher degree NURBS.

Fig. 16 Results of the cube with a cylindrical cutout, using quadratic elements (p = 2) and 36 coupled points per trimming curve
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Fig. 17 An unit cube with a cuboid cutout: a CAD model, b mesh model with linear elements (p = 1), and c top surface and 12 coupled points
along the trimming curve

Table 2 Relative errors of
selected points with respect to
different thickness ratio l/ l0

l/ l0 A B C D E F

1/2 1.693 × 10−4 2.500 × 10−4 5.018 × 10−4 1.284 × 10−3 1.774 × 10−3 2.096 × 10−3

1/3 5.370 × 10−4 1.154 × 10−4 8.931 × 10−5 9.447 × 10−4 3.734 × 10−4 1.760 × 10−4

1/5 1.659 × 10−4 9.833 × 10−5 4.766 × 10−5 2.385 × 10−4 1.262 × 10−4 8.259 × 10−5

1/15 1.929 × 10−2 2.681 × 10−3 2.803 × 10−3 2.227 × 10−3 3.013 × 10−3 3.164 × 10−3

1/75 1.457 2.564 × 10−2 3.768 × 10−2 2.380 × 10−2 2.034 × 10−2 4.001 × 10−2

These results were obtained without using extrapolation from the interior elements

Table2 shows the relative errors of the selected control
points with respect to different thickness ratio (l/ l0 in Fig. 7)
from 1/2 to 1/75. In this example, when the relative error
magnitude is or less than 10−3, it is on the order of the error
in the rest of the domain. When the thickness ratio becomes
small, e.g., l/ l0 = 1/15, the displacement of control point A
is 1.929×10−2,which is considerably larger than the overall
magnitude of the error.

For the case l/ l0 = 1/75 in Table2, the extrapola-
tion method reduces the relative errors of points B–F to
3.860× 10−3, 9.647× 10−3, 1.333× 10−3, 4.342× 10−3

and 5.983 × 10−3, respectively. Compared to the results in
Table2, the errors from the IGABEM with the extrapolation
method are obviously smaller than that without it, demon-
strating the utility of the extrapolation method. Note that the
control point A did not influence the solution in any element
in the IGABEM when the extrapolation is used since it is
effectively removed from the computation.

5.3 Problems with multiple trimming curves

Multi-trimmed problems are those with patches containing
multiple trim curves. In the multi-trimmed problems, if the
trimming curves are very close, there may be multi-trimmed
elements which are trimmed by more than one trimming
curves. In the work of Kim et al. [37], a local refinement
technique is applied recursively to divide the multi-trimmed
elements into smaller sub-elements that are trimmed by at

O

T
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d

z x

y

x = 0 surface
Fixed

   = 0.4
L = 0.2
d = 0.1
T = 10
E = 104

v = 0.3

φ

φ

Fig. 18 An unit cube with two cutouts

most one trimming curve. However, this method is inefficient
due to the extra computation introduced by the refinement.
In this work, the integration of the multi-trimmed elements is
directly completed by using the quadrature design method in
Sect. 3, which avoids the refinement and greatly improves
the efficiency. For the details about the efficiency of the
quadrature design method, the reader is referred to Nagy and
Benson [51].

The example in Fig. 18 is an unit cube with two cutouts
where x = 0 surface is fixed and x = 1 surface is subjected
uniformpressure. The entire geometry consists of 14 patches:
6 for the cube, 4 for the cylindrical cutout and 4 for the
cuboid cutout. There are 24 coupled points along each circle
or square trimming curve. The mesh contains 640 quadratic
NURBS elements as shown in Fig. 19a and the corresponding
number of control points is 888.Anelementwhich is trimmed
by two curves is shown in Fig. 19b. Assuming the domain

123



Comput Mech (2015) 56:173–191 187

Trimming
 curves

eΩ

1
tΩ

2
tΩ

(a) (b)

Fig. 19 The discrete model of the multi-trimmed cube in Fig. 18: a
mesh and b a multi-trimmed element

of the untrimmed element is Ωe
0 , the domain of the multi-

trimmed Ωe is Ωe
0 − Ω t

1 − Ω t
2 where Ω t

1 and Ω t
2 are the

cut-out parts. The integration points in Ωe are obtained by
using the quadrature design method once.

The vonMises stress solution of the IGABEMwith multi-
trimmed elements is plotted in Fig. 20a, and two ANSYS
solutions using 3733 and 31,929 quadratic tetrahedral ele-
ments are shown in Fig. 20b, c, respectively. The ANSYS
solution from the finer mesh is chosen as the reference solu-
tion. Based on the von Mises stress, the IGABEM solution
is closer to the reference solution than the ANSYS coarse
mesh solution. Note that the element size in the IGABEM
and coarse mesh for ANSYS are the same, demonstrating
the coarse mesh accuracy of the IGABEM.

6 Conclusions

The singular or weakly singular integrals in the BEMmust be
evaluated by specialized integration methods, some of which

cannot be used in the IGABEM [69], e.g., the rigid-body
motion method, increasing the difficulty of implementing
IGABEM. Moreover, many of the methods that are suitable
for simple basis functions, such as linear triangles or bilinear
quadrilaterals, are not applicable to higher order elements.

Applying the nonsingular formulation of the BEM–IGA,
which was first applied to IGABEM for Stokes flows by
Heltai et al. [29], is an effective method for addressing the
integration issues. In this research, based on the nonsingu-
lar BEM in [47], a multi-patch nonsingular IGABEM with
trimmed elements is presented. The quadrature rules for the
trimmed elements are obtained from the quadrature-design
method [51], which are optimal within the trimmed domains.

A modified set of Greville abscissae with the first and
last points moved to the element interiors is used to locate
the collocation points at the sharp edges and corners, and a
simple averaging technique is adopted to merge the surplus
collocation points along the edges and corners. Integration
by subdivision is used along the C0 boundaries. Lagrange
multipliers are used to enforce displacement continuity along
trimmed edges.

Numerical examples have demonstrated that the non-
singular IGABEM with trimmed elements accurately and
efficiently solves the trimmed problems, even the multi-
trimmed problems. Compared to the traditional IGABEM,
the IGABEM with trimmed elements may introduce errors
associated with the basis functions that have their support
limited to the small element fragments generated by the trim-
ming process, and an extrapolation method is proposed to
solve this trimming effect.

In order to further improve the accuracy and efficiency of
the method proposed in this paper, a more robust interpola-
tion scheme is being pursuing to conquer the trimming effect,
and the fast multipole BEM [76,78] is planned to replace the
conventional BEM in the IGA to accelerate the integration
computation. Besides that, other patch-coupling methods,
e.g., Nitsche’s method [52,61], Mortar method etc. [14,20],
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Fig. 20 The von Mises stress solutions of the multi-trimmed cube: a IGABEM with quadratic NURBS elements, b ANSYS with 3733 quadratic
tetrahedral elements and c ANSYS with 31,929 quadratic tetrahedral elements
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will be tried, and the nonsingular IGABEM with trimmed
elements will be expanded to other engineering problems,
such as elastodynamics, fluid mechanics and acoustics.
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Appendix: Evaluation of boundary stresses and dis-
placement gradients

The boundary stresses in the IGABEMmay be derived from
the traction-recovery method [24]. Following their develop-
ment, a local Cartesian coordinate system xi is defined as
shown in Fig. 21 (global coordinate system is xi ), where x1
and x2 are tangential to the surface and x3 is directed in
the outward normal direction. In order to concisely describe
the formulation, the notation (ξ1, ξ2) replaces (ξ, η) for the
intrinsic coordinates.

The derivatives of the intrinsic coordinates are

∂ξ1

∂x1
= 1

m1
,

∂ξ1

∂x2
= − cos θ

|m1| sin θ
,

∂ξ2

∂x1
= 0,

∂ξ2

∂x2
= 1

|m2| sin θ
, (33)

where mk and the angle θ are given as

|mk | =
√(

∂x1
∂ξk

)2

+
(

∂x2
∂ξk

)2

+
(

∂x3
∂ξk

)2

,

cos θ = 1

|m1||m2|
∂xi
∂ξ1

∂xi
∂ξ2

. (34)

The local displacements and tractions are expressed in
terms of the global displacements and tractions

ui = Li j u j , t i = Li j t j , (35)

1ξ

2ξ
n

θ 1x2x
3x

Fig. 21 Local orthogonal system for evaluating the derivatives of dis-
placements

in which Li j are entries of the rotation matrix L

L =

⎡

⎢⎢⎣

1
|m1|

∂x1
∂ξ1

1
|m1|

∂x2
∂ξ1

1
|m1|

∂x3
∂ξ1

n2L13 − n3L12 n3L11 − n1L13 n1L12 − n2L11

n1 n2 n3

⎤

⎥⎥⎦,

(36)

where n1, n2, and n3 are the components of unit outward
normal.

After some lengthy algebra using Hooke’s law, the bound-
ary stressmay be expressed in terms of the displacements and
tractions of control points as

σmn = Cmnjαu
α
j + Dmnjαt

α
j , (37)

where the coefficients Cmnjα and Dmnjα are

Cmnjα = 2μ

{
1

1 − ν

[
L1mL1n

(
∂ξk

∂x1
L1 j + ν

∂ξk

∂x2
L2 j

)

+ L2mL2n

(
∂ξk

∂x2
L2 j + ν

∂ξk

∂x1
L1 j

)]

+ 1

2
(L1mL2n + L2mL1n)

(
∂ξk

∂x1
L2 j + ∂ξk

∂x2
L1 j

)}
∂Nα

∂ξk
, (38)

Dmnjα = (L3mL1n + L1mL3n) L1 j

+ (L2mL3n + L3mL2n) L2 j

+
(

ν

1 − ν
δmn + 1 − 2ν

1 − ν
L3mL3n

)
L3 j , (39)

where Nα is the basis function associated with the αth con-
trol point of the element [refer to Eqs. (16) and (17)], ν is
Poisson’s ratio, μ is shear modulus, and δi j is Kronecker
delta.

With the help of the local coordinate system in Fig. 21, the
derivatives of global displacement can be expressed as

um,n = LrmLsnur,s . (40)

When the subscript j does not equal 3, the local derivatives
of displacements are

ui, j = ∂ui
∂x j

= ∂ui
∂ξk

∂ξk

∂x j
, (41)

where the subscript k ranges from 1 to 2. When the subscript
j equals to 3, according to Hooke’s law and σ i3 = t i , the
local derivatives of the displacements are
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∂u1
∂x3

= t1
μ

−
(

∂u3
∂ξk

∂ξk

∂x1

)
,

∂u2
∂x3

= t2
μ

−
(

∂u3
∂ξk

∂ξk

∂x2

)
,

∂u3
∂x3

= 1 − 2ν

μ(2 − 2ν)
t3 − ν

1 − ν

(
∂u1
∂ξk

∂ξk

∂x1
+ ∂u2

∂ξk

∂ξk

∂x2

)
.

(42)

Using Eqs. (16), (17), (35), (40)–(42), the derivatives of
displacements are expressed in terms of the displacements
and tractions of control points

um,n = Amnjαu
α
j + Bmnjαt

α
j , (43)

where the coefficient Amnjα is

Amnjα = (
L1mL1 j + L2mL2 j + L3mL3 j

)
L1ncα1

+
(

ν

ν − 1
L3m + L1 j − L1mL3 j

)
L3ncα1

+ (
L1mL1 j + L2mL2 j + L3mL3 j

)
L2ncα2

+
(

ν

ν − 1
L3m + L2 j − L2mL3 j

)
L3ncα2,

(44)

where coefficients cα1 and cα2 are

cα1 = ∂ξ1

∂x1

∂Nα

∂ξ1
+ ∂ξ2

∂x1

∂Nα

∂ξ2
, (45)

cα2 = ∂ξ1

∂x2

∂Nα

∂ξ1
+ ∂ξ2

∂x2

∂Nα

∂ξ2
, (46)

and the coefficient Bmnjα is

Bmnjα = L3n

μ

(
L1mL1 j + L2mL2 j

+ 1 − 2ν

2(1 − ν)
L3mL3 j

)
Nα. (47)

References

1. Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeo-
metric analysis of free-surface flow. J Comput Phys 230(11):4137–
4152

2. Azegami H, Fukumoto S, Aoyama T (2013) Shape optimization
of continua using NURBS as basis functions. Struct Multidiscip
Optim 47(2):247–258

3. Banerjee PK, Butterfield R (1978) The boundary element method
for engineers, vol 17. Pentech Press, London

4. Banerjee PK, Butterfield R (1981) Boundary element methods in
engineering science, vol 17. McGraw-Hill, London

5. Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton
S, Scott MA, Sederberg TW (2010) Isogeometric analysis using
T-splines. Comput Methods Appl Mech Eng 199(5):229–263

6. BazilevsY,HsuMC, ScottMA (2012) Isogeometric fluid–structure
interaction analysis with emphasis on non-matching discretiza-
tions, andwith application towind turbines. ComputMethodsAppl
Mech Eng 249:28–41

7. Bazilevs Y,Michler C, Calo VM,Hughes TJR (2010) Isogeometric
variational multiscale modeling of wall-bounded turbulent flows
with weakly enforced boundary conditions on unstretched meshes.
Comput Methods Appl Mech Eng 199(13):780–790

8. Bazilevs Y, Takizawa K, Tezduyar TE, Hsu MC, Kostov N, McIn-
tyre S (2014) Aerodynamic and FSI analysis of wind turbines with
the ALE-VMS and ST-VMSmethods. Arch Comput Methods Eng
21(4):359–398

9. Beer G, Smith I, Duenser C (2008) The boundary element method
with programming: for engineers and scientists. Springer, Berlin

10. BensonDJ,BazilevsY,HsuM-C,HughesTJR (2010) Isogeometric
shell analysis: the Reissner–Mindlin shell. Comput Methods Appl
Mech Eng 199:276–289

11. Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2011) A large
deformation, rotation-free, isogeometric shell. Comput Methods
Appl Mech Eng 200:1367–1378

12. BensonDJ, Hartmann S, Bazilevs Y, HsuM-C, Hughes TJR (2013)
Blended isogeometric shells. Comput Methods Appl Mech Eng
255:133–146

13. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM
(2012) A phase-field description of dynamic brittle fracture. Com-
put Methods Appl Mech Eng 217:77–95

14. Brivadis E, Buffa A, Wohlmuth B, Wunderlich L (2015) Iso-
geometric mortar methods. Comput Methods Appl Mech Eng
284:292–319

15. Buffa A, Sangalli G, Vázquez R (2014) Isogeometric methods for
computational electromagnetics: B-spline and T-spline discretiza-
tions. J Comput Phys 257:1291–1320

16. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis:
toward integration of CAD and FEA. Wiley, Chichester

17. Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric
analysis of structural vibrations. Comput Methods Appl Mech Eng
195(41):5257–5296

18. De Luycker E, Benson DJ, Belytschko T, Bazilevs Y, Hsu M-C
(2011) X-FEM in isogeometric analysis for linear fracturemechan-
ics. Int J Numer Methods Eng 87:541–565

19. Dedè L, Borden MJ, Hughes TJR (2012) Isogeometric analysis
for topology optimization with a phase field model. Arch Comput
Methods Eng 19(3):427–465

20. Dittmann M, Franke M, Temizer İ, Hesch C (2014) Isogeometric
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