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Acceleration of free-vibrations
analysis with the Dual

Reciprocity BEM based on
ℋ-matrices and CUDA

Yixiong Wei, Qifu Wang, Yunbao Huang, Yingjun Wang and
Zhaohui Xia

National CAD Support Software Engineering Research Center,
Huazhong University of Science and Technology, Wuhan, China

Abstract
Purpose – The purpose of this paper is to present a novel strategy used for acceleration of
free-vibration analysis, in which the hierarchical matrices structure and Compute Unified Device
Architecture (CUDA) platform is applied to improve the performance of the traditional dual reciprocity
boundary element method (DRBEM).
Design/methodology/approach – The DRBEM is applied in forming integral equation to reduce
complexity. In the procedure of optimization computation, ℋ-Matrices are introduced by applying
adaptive cross-approximation method. At the same time, this paper proposes a high-efficiency parallel
algorithm using CUDA and the counterpart of the serial effective algorithm in ℋ-Matrices for inverse
arithmetic operation.
Findings – The analysis for free-vibration could achieve impressive time and space efficiency by
introducing hierarchical matrices technique. Although the serial algorithm based onℋ-Matrices could
obtain fair performance for complex inversion operation, the CUDA parallel algorithm would further
double the efficiency. Without much loss in accuracy according to the examination of the numerical
example, the relative error appeared in approximation process can be fixed by increasing degrees of
freedoms or introducing certain amount of internal points.
Originality/value – The paper proposes a novel effective strategy to improve computational
efficiency and decrease memory consumption of free-vibration problems. ℋ-Matrices structure and
parallel operation based on CUDA are introduced in traditional DRBEM.
Keywords Adaptive cross-approximation, Compute unified device architecture,
Dual reciprocity boundary element method, ℋ-matrices
Paper type Research paper

1. Introduction
Elastic structures with arbitrary shape and time-dependent boundary conditions need
to be analyzed by numerical methods. With the development of science, many
numerical methods have been introduced for elastodynamics, such as finite difference
method (FDM), finite element method (FEM), boundary element method (BEM) and so
on. Because of the sparse combination matrix, FEM takes the dominant position
in most commercial software for solving elastodynamic problems. However, those
pre-processing operations, such as the selection of 3D element, quality control for mesh
process, adjustment of small features and so on, occupy a large portion of computation
resources. Those disadvantages lead to the obstacle of the integration of CAD\CAE
procedure, which means the engineers need to transform model between CAD software
and CAE software with complex treatment again and again (Park and Dang, 2010;
Bazilevs et al., 2010). This kind of transformation obviously is tedious and inconvenient
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for engineers. Compared with FEM and FDM, the BEM, due to the advantages such as
dimensionality reduction, high precision, is much more suitable for fast pretreatment,
self-adaptive structural analysis in engineering software. That leads to the possibility
for integrating engineering analysis process into CAD, as discussed by Wang (2009)
and Wang et al. (2013) about their research in elastostaics. Meanwhile, boundary face
method is an efficient solution method to the boundary integral equation and makes
direct use of the B-rep data of a solid entity that available in all CAD packages (Zhang
et al., 2009; Qin et al., 2010). In this paper, the efficiency of new strategy with BEM for
free-vibration problems is discussed.

Rizzo introduced boundary integral element method into elastostatics first (Rizzo,
1967), which marks the beginning of systematic development of BEM for numerical
problems. Banaugh and Goldsmith (1963) applied BEM into dynamics for steady plane
elastodynamics, Tai and Shaw (1974) and De Mey (1976) utilized BEM for free-vibration
problems. Many researchers, such as Niwa et al., Beskos, Dominguez, Friedman, made
effort for applying BEM into elastodynamics either time-domain or frequency-domain
(Rizos and Karabalis, 1998; Michel, 1987; Banerjee et al., 1986; Karabalis and Beskos,
1984, 1985 Dominguez and Roesset, 1978a, b). Nevertheless, the non-symmetric, fully
populated matrix and low stability in numerical results of BEM would result in huge
workload in computations and memory space within elastodynamic. This reason makes
BEM rarely be used for solving 3D elastodynamic problems in engineering (Liu et al.,
2011). In traditional time-domain BEM field, the computational complexity will be
O(NtN s

2) while Nt is the time steps and Ns¼O(n2) denotes discretization scale with
respect to O(n) observation points, as compared to only O(NtNs) for FEM and fast
multipole method (FMM).

The Dual Reciprocity Boundary Element Method (DRBEM) proposed by Nardini
and Brebbia (1983) was concluded requiring less computation time than traditional
BEM either in time-domain or frequency-domain by Chirino et al. (1994). The formulation
in DRBEMmakes use of static fundamental solutions to weight the dynamic equilibrium
equation. It also uses an approach which first approximates the displacement field by a
finite series radial basis functions (RBFs), and then apply the reciprocal theorem twice to
convert the inertial volume integral to a surface. This method combines the advantages
of dimensionality reduction and simplicity of elastostatic foundation solution. Ahmad
and Banerjee (1986) proposed another particular integral BEM approach for conversion
from domain to surface ones, which is proved to be mathematically equivalent to
DRBEM. Due to the introduction of reciprocity twice, the final numerical equation
involves matrix-matrix production (MMP) and matrix inversion operation, both of which
are of O(N 3) complexity.

Lots of methods have been developed to reduce time and space complexity for
numerical solution, such as the mosaic-skeleton approximation (Tyrtyshnikov,
1996; Aparinov and Setukha, 2010), the FMM (Rokhlin, 1985; Wei et al., 2012;
Zhang and Tanaka, 2007), PWTD (Nishimura, 2002) and the panel clustering
method (Hackbusch and Nowak, 1989). Mosaic-skeleton is devised by Hut and Piet
(1986) for the treatment of the gravitational N-body problem, which is based on
hierarchical subdivision of the space into Octree cells and approach mutual action
between cells through recursive scheme. Based on multipole expansions for
approximating kernel functions, Greengard and Rokhlin (1997) presented a similar
approach for particles problems. Referring to those early works, FMMs have been
developed to solve boundary element formulations for different kinds of problems,
Wei et al. (2012) has involved FMM for dealing with 3D elastodynamic simulation
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procedure, but the efficiency is proved to be negative for complicated MMP
operation. And panel clustering method requires the knowledge of some kernel
expansion in advance to perform integration, and have scarcely effect referring to
O(N3) matrix arithmetic operations.

This paper introduces another effective numerical method presented by Hackbusch
(1999) with hierarchical tree structure, which is similar to mosaic-skeleton method in
matrix compression consideration. Representing the coefficient matrix in hierarchical
format, the solution of the system can be obtained either directly by inverting the
matrix in hierarchical format, or indirectly by using iterative schemes with or without
pre-conditioners (Grasedyck, 2005; Bebendorf, 2005). Tyrtyshnikov (1996) has observed
that low-rank block approximations could be built from only a few entries of
the original block. Then Bebendorf (2000) proposed the method for construction
low-rank approximation through regularization evaluation with selected rows and
columns (pivot in original block). Three years later, Bebendorf and Rjasanow (2003)
have further developed this method and referred as adaptive cross-approximation
(ACA). This algorithm has been demonstrated almost linear complexity either in
computation efficiency or storage requirement. Recently, some other researchers
have focussed on the optimization of ACA, such as Zhang et al. (2013). Considering
accuracy and stability, ACA algorithm is considered for low-rank block approximation
in this paper.

Hierarchical matrices and their arithmetic have been extensively studied, and their
application has been proved successful for the analysis of some realistic problems. For
example, Kurz et al. (2002) and Ostrowski et al. (2006) proposed applications for
electromagnetic problems, and Bebendorf and Grzhibovskis (2006) proposed the
application for elastic problems. Recently, more and more researchers took efforts to
hierarchical matrices in elastodynamic field. Such as Chaillat’s work in model seismic
wave propagation and amplification with multi-domain BEM (Chaillat et al., 2009);
Benedetti’ s work (Benedetti and Aliabadi, 2010) of involving hierarchical matrices into
elastodynamic crack problems; and the work about anisotropic time-harmonic in 3D
elastodynamics discussed by Milazzo et al. (2012).

During the evaluation numerical equation in DRBEM, the inversion arithmetic
is necessarily to be noticed for high complexity in computation. In this paper, a
parallel inversion algorithm applying Compute Unified Device Architecture
(CUDA) technology is presented in Section 4, and speedup ratio is compared with
ℋ-Matrices inversion algorithm. CUDA is proposed by NVIDIA Corporation in
2003 for accelerating general computation processes with graphics processing
units (GPU). Because of the purely aim for calculation, this technique is suitable
for numerical computation. At present, there are already some researchers taking
CUDA into numerical problems, such as, Gumerov and Duraiswami (2008)
pioneered fine-grained parallel FMM algorithm based on CUDA, Wang et al. (2013)
takes advantage of CUDA to accelerate classical fast multipole BEM for elastatics.
It is worth noting that the parallel algorithm has the limitation of the scale
of solvable problem for limitation of the device memory space. There are two
strategies for applying ℋ-Matrices with DRBEM to solve free-vibration problems
in Section 4.2: one is covering all matrices referred in numerical equation with
hierarchical structure for large-scale problems named purely ℋ-Matrices&DRBEM
method (PHDM), and another strategy is only covering part of matrices to
avoid complicated truncation operation for pursuing efficiency named mixed
ℋ-Matrices&DRBEM method (MHDM).
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This paper is organized as follows. First, the basic equations for free-vibration
analysis through DRBEM are briefly reviewed. The hierarchical matrix structure and
algorithm is discussed in detail in Section 3, and the serial and parallel algorithm
for inverse operation are also presented in this part. Then, two different strategies
with ℋ-Matrices&DRBEM are presented in Section 4. In the last section, some
free-vibration problem models are discussed to address the effect of strategies
presented in this paper.

2. DRBEM in elastodynamics
The computation process can be greatly simplified by using static fundamental
functions instead of dynamic ones. But the inertial item will appear in the equation such
that the domain field needs discretization, which makes the technique lose the
attraction of its “boundary only” character. The DRBEM is essentially a generalized
way of constructing particular solutions that can be used to represent internal source
distribution. For the homogenous medium, the motion of linearly elastic body of
volume Ω and surface S is described by Navier-Cauchy partial differential equation.
Assuming zero body forces and initial conditions, as applying traditional BEM, one can
obtain an integral representation.

The fundamental solution is very complicated for computation. Because of the
time variables in integral equation, the complexity will be O(NtNs

2) where Nt is
the time steps and Ns¼O(n2) denotes discretization scale with respect to O(n)
observation points, while the complexity is only O(NtNs) for FEM and FMM. For
simplifying the computation process, one can substitute static functional solutions
with dynamic ones, such as:

c xð Þu x; tð Þ ¼
Z
G

un x; xð Þp x; tð Þ�pn x; xð Þu x; tð Þ� �
dG xð Þ �

Z
O

un x; xð Þru€ x; tð ÞdO xð Þ;

(1)

in which u*(x,ξ) and p*(x,ξ) are static fundamental solutions and the overdot indicate
differentiation with respect to time. However, the appearance of the inertial
volume integral in Equation (1) indicates the discretization in volume domain is
unavoidable, which would eliminate the biggest advantage of BEM. Nardini and
Brebbia (1983) transferred this volume integral to the boundary surface, thereby
creating an all-boundary integral formulation that leads to DRBEM.

The key point of DRBEM is expressing the unknown u(x, t) in Ω as a series
of production by unknown time-dependent coefficients ami tð Þ and known basis
function fm(x):

ui x; tð Þ ¼
XM
m¼1

ami tð Þf m xð Þ; xAO; (2)

in which M¼N+L, and N and L are the number of boundary and internal collocation
points, respectively. It is worth noting that L could be zero. According to the work of
Agnantiaris et al. (2001) for 3D elastodynamics, the effect of augmentation in the linear
RBF for accuracy is very small, and for non-axisymmetric 3D structures polynomial
1+ r is simplest and high-accuracy RBF.
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Using the reciprocity theorem again, one succeeds in transforming Equation (1) into
a boundary integral form:

�
Z
O

un x; xð Þru€ x; tð ÞdX xð Þ

¼ r
XM
m¼1

a€ mn cij xð Þkmjn xð Þþ
Z
G

pnij x; xð Þkmjn xð ÞdC xð Þ�
Z
G

unij x; xð Þzmjn xð ÞdC xð Þ
#
;

2
4 (3)

in which kmjn xð Þ and zmjn xð Þ are the particular solutions of displacement and traction
field, which corresponds to the function f introduced in Equation (2) for approximating
the dynamic displacement field. The equation of these two solutions are listed in
Appendix, respectively. Then, with the discretization of the boundary Γ into numbers
of triangle elements (the total number of node is N), Equation (1) could form the matrix
equation:

M½ � u€f gþ H½ � uf g ¼ G½ � pf g; (4)

where:

M½ � ¼ r G½ � P½ �� H½ � W½ �ð Þ F½ ��1; (5)

in which [H ] and [G] are the integral coefficient N× 3×N× 3 matrices, [F ] is the
matrix contains the value of basis radial function f, and [P] and [W] are matrices
containing sub-matrices of particular solution jmj and fmj . When introducing the
collocation points to improve accuracy, the matrices could be wrote as:

M½ � ¼ r
GBB

GDB

" #
PBB PBD
� �� H BB H BD

H DB H DD

" #
WBB WBD

WDB 0

" # !
F½ ��1; (6)

in which the subscript B and D represent the boundary nodes and interior collocation
points, respectively.

In modal analysis, considering time-harmonic dependence for the boundary
displacement and traction vectors appearing in Equation (4). The frequency-domain
equation is:

�o2 M½ �þ H½ �� �
u0f g ¼ G½ � p0

� �
; (7)

in which ω is the circular frequency of the harmonic excitation of u and p vectors with
amplitude u0 and p0, respectively. Just setting the external disturbances equal to zero,
one can obtain numerical equation of free vibration problems:

A½ � xf g ¼ o2 M n
� �

xf g; (8)

in which [A] is the BEM influence matrix referring to all unknown boundary variables
contained in {x}, and [M*] is obtained by setting zeros in [M] in which sub-columns
refer to specified displacements.
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3. Hierarchical matrices
3.1 Basic principles for ℋ-matrices
There are two kinds of representation to store matrix data, one is entrywise format and
the other is out-product format (see Equation (9)):

A ¼
Xk
i¼1

uivHi (9)

where ui and vi is the ith vector, i¼ 0,1,…, k,AACm�n
k . Instead of storingm× n entries,

we can store the matrix A with m× k matrix U and n× k matrix V, which requires
k(m+n) units of storage space. Hence, if the rank of k is small enough, it will save large
memory space for storing matrix data. Hackbusch (1999) pioneered the ℋ-matrix
format and their arithmetic: hierarchical matrices can be thought as a set of blocks
connected in hierarchical tree structure, some of which satisfied admissible condition
(Equation (12)) could be approximated by low-rank block for compression space, then
the other leaf blocks are represented entirely.

Before obtaining the block, the partition of the matrix indexes through subdivision
of nodes need to be executed, which leads to the so-called cluster tree. The cluster tree is
used to form pairs of clusters recursively to define the block tree which provides the
hierarchical block subdivision of the matrix. Applying recursive algorithm, the root
collocation of nodes will be divided into binary subsets when the number of nodes in
each cluster does not exceed the minimum blocksize nmin. However, different from FMM
or other recursive algorithm with tree-boxes structure, those clusters are obtained from
judging the rearrange index of node zi∈Xi by the plane (line for 2-dimension (2D))
whose normal direction is the main direction of father cluster. As seen from A of
Figure 1, the symbol mt is the centroid of t cluster, S is the judgment plane (judgment
line in 2D), μ(Xi) is the distance from arbitrary point Xi to fixed point Zi:X

iA t

wT zi�mtð Þ
�� ��2 ¼ max

vj jj j2

X
iA t

vT zi�mtð Þ
�� ��2 (10)

mt ¼
P

iA tm Xið ÞZ iP
iA tm Xið Þ

S

S

wt

wt

mt

mt

3 - Dimension

2 - Dimension

x x

x x

z z

z z

(a) (b)

Figure 1.
Judge the position
of nodes with
main direction
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And if wt satisfies the equation in Equation (10), we will name it the main direction of
surfaces in t cluster and that will also be the normal direction of S. We should know
that wt is actually attained as the eigenvector corresponding to the largest eigenvalue of
Ct refer to Equation (11) (Bebendorf, 2008b). Through this kind of subdivision, balanced
partition could be obtained, as shown in the example in B of Figure 1.

For symmetric positive semi-definite covariance matrix:

Ct ¼
X
iA t

zi�mtð Þ zi�mtð ÞTA Rd�d (11)

During the partition process, the rearrangement of node index should be noticed before
constructing ℋ-Matrices structure. The bijective map should be founded for tracking
original node position which is necessary to evaluate matrix entries. The rearrange
process for founding the bijective map is explained in the following with a 2D example.
Color lines in Figure 2 refer to the judge line cross the centroid of cluster locate in
different level of hierarchical structure mentioned in Section 3.1, and red points are the
discretized nodes. The numbers around the red point denote the node indexes in
original and current, the latter are contained in brackets.

The process for obtaining the block cluster tree recurs from the root of index cluster
tree with pair subsets in x, y dimensions, and will not stop until the Equation (12)
condition is satisfied or comes across leaf subset in either dimensions. The final
hierarchical block clusters structure can be referred to Figure 3. Through the partition
process, all sub-blocks can be identified two parts: admissible and non-admissible.
A block is called admissible as it refers to a cluster of integration elements, whose distance,
from the cluster of source nodes is about a certain threshold (see Equation (12)); or

14 (14)

13 (13)

12 (12) 12 (12)11 (11)
11 (11)

10 (10)

11 (11)
10 (10) 9 (9)

8 (12)
7 (13)

6 (14)

5 (15)

4 (14)

3 (3)

2 (2)

1 (1)0 (0)

16 (4)

15 (5)

14 (6)

13 (7)

12 (8)

9 (9) Original Index (Current Index)

8 (8) 0 level

1 level

2 level

7 (13)

6 (14)

5 (15)

4 (16)

3 (3)

2 (2)

1 (1)0 (0)

16 (4)

15 (5)

14 (6)

13 (7)10 (10) 9 (9)

8 (8)7 (7)

6 (6)

5 (5)

4 (4)
3 (3)

2 (2)

12 (8) 11 (9)
10 (10) 9 (11)

8 (12)
7 (13)

6 (14)

5 (15)

4 (16)

3 (3)

2 (4)
1 (1)0 (0)

16 (2)

15 (5)

14 (6)

13 (7)

1 (1)0 (0)

15 (15)

16 (16)

Figure 2.
Rearrange process

for node index in 2D
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non-admissible as either cluster in pair of subset of cluster tree corresponding the block
is smaller than blocksize nmin:

min diamUOx0 ; diamUOx
� �

pZUdist Ox0 ; Ox
� �

(12)

where Ox0 denotes the cluster contained source points corresponding to the row indices
of a block in the original matrix andΩx the set of integration elements corresponding to
the column index.

All admissible block could admit a compressed low-rank approximation.
The compressed low-rank approximation of the blocks theoretically stems from the
decomposition of kernel functions and the mathematical derivation is presented in
Bebendorf’s (2008a) work.

3.2 ℋ-Matrices arithmetic
This section takes a brief introduction about basic arithmetic operations with
ℋ-Matrices such as addition, matrix-vector production, truncation and MMP. The
details of expression could refer to Hackbusch’s (1999) work. The inversion operation
will be discussed detail in next section. In the following, the symbolℋ(T, k) refers to the
ℋ-Matrix with maximum rank k, T represents the cluster partitions for the indices of
all nodes, ℒ(TJ×K) refers all leaves in the partition set, Fj(t)∈TI and Fj(s)∈TK denote
the uniquely defined ancestors of t and s from the jth level of partition TI and TK,
respectively.

Truncation. To avoid the increase of storage and computation complexity with
improved rank value of block, it needs to set a preliminary fixed small value as
maximum block rank. Truncation is an approximation procedure for mapping H(T, k′)
to H(T, k) with decreasing k′ to fixed maximum rank k without modifying hierarchical
structure. For each sub-block in hierarchical matrix, only low-rank block represented in
outer-product formulation (Bebendorf, 2008a) should be truncated during specific
arithmetic operations between ℋ-Matrices. ACA method is applied for approximating
admissible blocks by out-product format in this paper.

Matrix-vector multiplication (MVP). MVP is the most popular arithmetic operation in
numerical problems, and researchers have proposed several kinds of fast algorithms

admissible block

 non-admissible block

Arirj

Arirj

a11 a1n

am1 amn

= UV =

=

k

i=1

uivi
H

...

...

...... ...

y

x

Figure 3.
Hierarchical matrix
structure with
block clusters
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for acceleration in past century, such as FMM, fast fourier transform method and so on.
ℋ-Matrices arithmetic is another technique for accelerating this process from O(N2)
to almost linear complexity. Because of the low-rank blocks in hierarchical matrix,
the data referring to production process will decrease greatly, which leads the
improvement of efficiency for the multiplication by matrix and vector. The number of
operations NMV required for MVP A*b¼R of A∈H(TI× J, k) by a vector b holds that:

NMV �max k; nminf g Ij jlog Ij jþ Jj jlog Jj j½ � (13)

To be brief, this operation procedure actually accumulates the product results, obtained
by multiplying each leaf in ℋ-Matrix with corresponding vector values (as Figure 4
shows), into each corresponding position of objective matrix level by level.

Addition. This operation in ℋ-Matrices always combines truncation operation
mentioned above, which means this process is much more complicate than the usual
entrywise matrices addition procedure. The formatted addition in ℋ-Matrix is defined
as a truncation of the sum to the set of ℋ-Matrices (Grasedyck and Hackbusch, 2003).
Then the operation complexity performed in each low-rank block is about O(kA+kB)

2

(m+n) when the dimension of block is m×n and ranks are kA and kB, respectively. For
avoiding this time-consuming operation, MHDM is proposed in next section.

MMP. The MMP is O(N3) arithmetic operations and one of its main issues about
time consumption during numerical computation. Actually, MMP is taken as group of
MVP operations in traditional method, and each matrix data would be recalled
repeatedly. So those effective algorithms for MVP, such as FMM, are no longer good at
the MMP operation. In Wei et al. (2012) work, FMM was introduced for elastodynamic
simulation, and parallel algorithm was involved to compensate low efficiency.

With applying ℋ-Matrices, this procedure will be transformed into the
multiplication between leaf blocks and then executes the superposition level by level.
Due to the same reason with MVP, less scale of data makes the computation efficiency
improved significantly. The detail processes for MMP is described in Equation (14), the
result is obtained from accumulating each block production results from root level to
the final level:

ABð Þts ¼
Xl
j¼0

X
rAUj t�sð Þ

AtrBrs (14)

A b

+=×

R

Ribiuivi
H

Figure 4.
Matrix-vector
multiplication
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where Uj(t× s):¼{r∈T(j)
J : Fj(t)× r∈TI× J and r× Fj(s)∈L(TJ×K) or FJ (t)× r∈L(TI× J)

and r×FJ (s)∈TJ×K}
For example, there is three level in hierarchical matrices in Figure 5, dotted line

framework denotes partition structure. The leaf block in root level 0 is first searched
and child level 1 will be processed when the leaf set in level 0 is empty. There are three
leaves in level 1 in both A and B matrices, such as ① block, which means we could find
the set Uj(t×s) as j¼ 1. As figure shows, Atr and Brs corresponds the yellow parts of
block ①, and the production result will add to the final corresponding position. We
should note that the hierarchical structure of multiplication result is determined by
both two input hierarchical matrices structure.

4. Application of ℋ-Matrix and DRBEM
4.1 Inversion algorithms in serial and parallel
Matrix inversion arithmetic is a huge time-consumption procedure in numerical
operations, and also absolutely necessary for free-vibration elastodynamics using
DRBEM. The complexity of inversion is about O(N3) with traditional methods with N
dimension matrix. During the regularization evaluation process, each row in matrix is
not independent with index during computation. There is still little effective algorithm
proposed for acceleration of the procedure except for some approximation techniques.
With applying hierarchical characteristics in ℋ-Matrices, serial recursive inversion
algorithm is presented in Table I, the final inverse result is archived from agglomeration
sub-results level by level. For example, the exact inverse value of the block clusterM on
level p is obtained from block clusters on level p-1, as Equation (15) shows:

M�1 ¼
M 11

�1 IþM 12S
�1M 21M 11

�1
	 


�M 11
�1M 12S

�1

�S�1M 21M 11
�1 S�1

2
4

3
5 (15)

where:

S ¼ M 22�M 21M 11
�1M 12

As for the pseudo-code in Table I, capital letters denote matrix data in any block,
S means the son sets partition of current block, m, n, l and r denote dimension annotate
in hierarchical block, and the subscript refers to the partition index. For example,
AUXri�rj denotes the block data of ri dimension length in row and rj dimension length
in column. In the following description, AUX is used as auxiliary matrix to store
temporary data, M is the input matrix, and INM is the inversion result.

F(s)

F(t)
t

r

r

s s

t

× =

1

1
Figure 5.
Illustration for
MMP procedure
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Comparing with traditional method, ℋ-Matrices method for inversion computation
indeed has great effect on improving computation efficiency. Nevertheless, for the
approximation procedure while obtaining hierarchical matrices, the relative error with
approximation data must be transformed and enlarged along with recursive inversion
operations. Besides the serial algorithm for inversion operation discussed in detail, this
paper also proposed a parallel algorithm with CUDA for accelerating the operation.
Figure 7 takes a new parallel inversion algorithm with CUDA and would not involve
additional approximation error. The comparison of efficiency with the two inversion
algorithm is presented at the end of this section.

With the dependent relationship during rows in matrix, the inversion procedure could
not simply separate all the serial internal operations into different kernels. Figure 6

Procedure Inverse_HMatrix(var M, int r, var InM, var Aux)
if (S(r×r)¼∅) then InMr×r :¼ (Mr×r)

�1)
else determine the sons of r set, S(r)¼ {r1, r2}

for i¼ 1:2 do
Inverse_HMatrix(M, ri, InM,Aux);
if ((j¼ i�1)W0) then Auxri�rj :¼ 0;

MultiAdd_HMatrix Auxri�rj ; ri; ri; rj; InMri�ri ; InMri�rj

� �
;

InMri�ri :¼ Auxri�rj ;
if (( j¼ i+1)o3) then Auxri�rj :¼ 0;

MultiAdd_HMatrix Auxri�rj ; ri; ri; rj; InMri�ri ; InMri�rj

� �
; Mri�ri :¼ Auxri�rj ;

if ((k¼ i+1)o3) then
for j¼ 1:2 do

Auxrk�rj :¼ 0; MultiAdd_HMatrix Auxrk�rj ; rk; ri; rj; Mrk�ri ; InMri�rj

� �
;

Auxrk�rj :¼�Auxrk�rj ; Add_HMatrix InMrk�rj ; rk; rj; InMrk�rj ; Auxrk�rj

� �
;

end
if ((j¼ i+1)o3) then

Auxrk�rj :¼ 0; MultiAdd_HMatrix Auxrk�rj ; rk; ri; rj; M rk�ri ; InMri�rj

� �
;

Auxrk�rj :¼ � Auxrk�rj ; Add_HMatrix Mrk�rj ; rk; rj; InMrk�rj ; Auxrk�rj

� �
;

end
for i¼ 1:2 do

if ((j¼ i�1)W0) then
for k¼ 1:2 do

Auxrj�rk :¼ 0; MultiAdd_HMatrix Auxrj�rk ; rj; ri; rk; Mrj�rk ; InMri�rj

� �
;

Auxrj�rk :¼ � Auxrj�rk ;
Add_HMatrix InMrj�rk ; rj rk; Auxrj�rk ; Auxrj�rk

� �
;

end end

Function MultiAdd_HMatrix(var C, int m, int l, int n, var A, var B)
C0 :¼ 0Aℝm�n

if (S(m×l)¼∅ or S(l×n)¼∅) then
C'¼Am×l×Bl×n;
Add_HMatrix(C,m,n,C, C');

else for each m'∈S(m), l'∈S(l), n'∈S(n) do
MultiAdd_HMatrix(C'm'×n', m', l', n',A,B);

Function Add_HMatrix(var C,int m,int n,var A,var B)
if (S(m×n)¼∅) then

Cm×n¼Cm×n+Am×n+Bm×n; //truncation addition
else for each m'×n'∈S(m×n) do Add_HMatrix(C, m', n',A,B);

Table I.
Pseudo-code for
matrix inverse
algorithm in

ℋ-Matrix structure
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introduces the distribution of kernels for parallel inversion algorithm in GPU. The top
module is grid contains blocks (as the symbol B refers in Figure 6) in X and Y direction,
and the number is determined by the total number of threads needed for computation and
capacity of each block. Each block contains numbers of threads (as the symbol T refers in
Figure 6), and the final kernel function will be executed in these threads. The threads in
block also have the direction separation with x and y.

During the parallel algorithm introduction in Figure 7, T means the thread position
in global threads, which also corresponds to data position in matrix data in this
algorithm the suffix _x (_y) implies the position in x (y) direction; the suffix _D refers to
the diagonal data in matrix, and _C is the data in fixed column.

For testing the effect of algorithms mentioned above, we select five different number
of degrees of freedom (DOFs), such as 1,356, 3,348, 4,995, 7,257, 10,584, to count the time
and memory consuming. We should know that the scale of matrix is directly depends
the number of DOFs. The speedup results with respect to different DOFs are summarized
in Figure 8 with comparison between serial hierarchical matrices algorithm and parallel
algorithm, and the memory consumption results are presented in Figure 9. The suffix _M
in figures denotes the host memory consuming and _DM means the device memory
consuming.

It is easy to find that the time would rise rapidly in serial algorithm as the scale of
problem increasing, and the increment in parallel algorithm is much gentler, as Figure 8(a)
shows. In current computational environment, the speedup ratio is about 13 times in
average for parallel algorithm and just about five times for ℋ-Matrices according to
Figure 8(b). Therefore, the conclusion can be obtained that the parallel inversion
algorithm with CUDA has obvious advantage in efficiency with respect to ℋ-Matrices
strategy. However, from Figure 9, the memory-consuming comparison indicates parallel
method would consuming much more storage space in host memory than either
traditional serial method orℋ-Matrices strategy, and it also needs device memory which
is unnecessary for other two methods. The display memory space could not be added
manually as usual host memory, and the space is generally limited by 1-2 GB in personal
computer at present. So the scale of solvable problem would be limited if the parallel

T: Thread
B: Block x

y
B (0-0)

B (1-0)

B (X-0) B (X-1) B (X-Y)

T (0-0) T (0-y)

T (x-0)

x, y,: dimension length of block in
three directions

x, y,: dimension length of grid in
three directions

T (x-y)

B (1-1)

B (0-1) B (0-Y)
Grid

B (1-Y)

Figure 6.
Parallel structure of
CUDA in GPU
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HOST

M EM[ [] ]

DEVICE

For i=1:dim do

Grid -1

Block

_shared_float sdata[16]

Block

Block

Grid - 2

Grid - 3

End

Kernal - 1:

Kernal - 2:

Kernal - 3:
Normalise(d_iMatrix.pos)

if (T_x != pos) then
d_iMatrix[T_obj] = d_iMatrix [T_obj]/g_iMatrix[T_D];

Matrix_Tranform(d_iMatrix,d_iVector,pos)

CompCoe(d_iMatrix,d_iVector)
{

{

{
if (threadldx.y==0) then

if (T_y != pos) then

sdata [threadldx.x]*d_iVector[T_y];
d_iMatrix [T] = d_iMatrix[T]-

sdata[threadldx.x] = d_iMatrix[T_obj];

}

}

}

d_iVector[T_y]=d_iMatrix[T_C]/d_iMatrix[T_D];

MallocHost(TmpMatrix,size);

MallocDevice(d_iMatrix,size);
MallocDevice(d_iVector,size);

(InputMatrix) (Tmp Matrix);

HOST

→ ⏐
EM[ [] ]⏐(TmpMatrix)

FreeDevice(d_iMatrix);
FreeDevice(d_iVector);
FreeHost(TmpMatrix);

MemcopyHost2Device MemcopyDevice2Host

(d_iMatrix.TmpMatrix,size); (d_iMatrix.TmpMatrix,size);

(OutMatrix);→ InM

Figure 7.
Inverse algorithm in
parallel with CUDA
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inversion algorithm is applied for ℋ-Matrices&DRBEM. We also could find that
ℋ-Matrices strategy has obvious advantage with respect to traditional methods in
memory consumption. Thus, it is reasonable to applyℋ-Matrices inversion algorithm for
large-scale problems and parallel algorithm for high-efficiency demand.

4.2 PHDM and MHDM
At the beginning of this section, we will first discuss the treatment for the singular
Cauchy principal value (CPV) integration during Equation (3) while obtaining the
coefficient matrix H. The usual method for dealing with this singular integration is
rigid-body motion method which cannot be applied in hierarchical matrices for
incomplete matrix entries. The approximation method proposed by Guiggiani and
Gigante (1990) for CPV integrals on surface domain is introduced for evaluating the
entries located in diagonal of hierarchical structure. The singular integration would be
separated into two parts: local area ee in which the source point ξ is at a distance ⩽e,
and non-singular integral parts of field elements. And the integration should be
converted into polar coordinates in local parameter plane of field element. The detail
processes of this method can refer to the works by M. Guiggiani and A. Gigante.

With respect to the equation of DRBEM presented in the second section, the main
time cost issues are MMP and inversion operation. As the introduction in the above, we
should know it could save memory space and improve computation efficiency by
introduction ℋ-Matrices for MMP operation. On the other hand, MMP contains
truncation addition arithmetic which is the high-time consuming part while evaluating
Equation (4). Although some strategies for truncation, such as orthogonality method
(Bebendorf, 2008a), have been investigated, the improvement for the efficiency is
slightly, especially for large-scale problems.

During the investigation of MMP operation in ℋ-Matrices, we find that the
multiplication between ℋ-Matrices and entrywise matrix will not lead to additional
truncation operation, which means it is possible to accelerate production procedure by
using two different types of matrix for avoiding truncation operation. Two different
strategies are proposed in following based on matrix structure. One is covering all the
matrices referred in numerical equation, such as coefficient matrices and particular
solution matrices, with hierarchical structure for maximum compressing storage

4,000
inversion_CUDA_M

inversion_CUDA_DM

inversion_Serial_M

inversion_H-Matrix_M

3,500

3,000

2,500

2,000

1,500

1,000

500

0

−500
0 2,000

M
em

or
y 

(M
B

)

4,000 6,000 8,000 10,000 12,000

Degrees of Freedom

Figure 9.
Memory consuming
in memory and
display card memory
for different method
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consumption named PHDM. This strategy could make the memory space consumption
decreasing to 10-30 percent over the traditional method. However, this kind of method
could not guarantee the highest efficiency for truncation operation. So another strategy
for purchasing efficiency performance is presented which at the cost of some storage
space. During the MMP operation, only one of multiplier matrices is denoted with
hierarchical structure and the other will be represented with traditional entrywise
structure. This kind of consideration is called MHDM. The detail processes for these
two methods applied for DRBEM is described in Figure 10.

Because theHmatrix need to participate follow up MMP operations, as Equation (4)
implies, which is usually represented with entrywise structure in MHDM algorithm.
Then the singular integration appeared in H matrix could be calculated by rigid-body
motion method. The M matrix for inversion operation while solving natural
frequencies also need to maintain entrywise structure, so it could use high-effective
parallel inversion algorithm proposed in the above.

According to the description in the Figure 10, it is obvious that MHDMwill consume
much more memory space for full populated entrywise matrices P ′, W ′, GP ′, HW′
and S ′, and also will archive much more superior efficiency performance at the same
time. The comparison for efficiency and memory consuming will discussed in
the last section with examples.

5. Numerical examples
This section validates the accuracy and efficiency of ℋ-Matrices strategy proposed
above through several numerical examples. The linear triangular elements are used in
both examples. All the program codes are executed on a desktop computer with Intel
Core 2 I7 CPU, and the host memory is 8 GB. The display card is NVIDIA GeForce 590
which owns 1.5 GB device memory space. The peak floating-point arithmetic
performance is 4.64 Tflops and 984 Gflops in single and double precision, respectively.
In examples, the minimal blocksize nmin¼ 15, η¼ 0.5 and the accuracy for ACA
approximation e¼ 10−4 are chosen, and the material parameters are: Shear modulus
μ¼ 106 Pa, Poisson’s ratio v¼ 0.3, and mass density ρ¼ 7,400 kg/m3.

Create cluster tree (CT );

PHDM MHDM

Subdivision with CT forming block cluster tree (BCT );
Rearrange node index according BCT ;

Forming Matrices H, G, P, W, F in BCT structure;
MMP operation: GP:=G*P; HW:=H*W; archived Matrices GP

Matrix S with BCT structure.

Compute final coefficient

and HW;
GP’ and HW’;

Addition operation: S’:=GP ’-HW ’, S is the entrywise matrix;

next section);

Forming entry wise matrices P ’ W ’ with traditional method.
Forming
MMP operation: GP’:=G*P;HW ’:=H*W; archived entrywise matrices

Matrices H, G, F in BCT structure;

(two defferent inversion methods in serial and paralled is proposed in
Inverse operation for obtaining F –1;

Inverse operation for obtaining F –1;

Convert entrywise matrix S’ into

Matrix;Truncation Addition operation: S:=GP-HW; also S is the

−
− −

−

−Matrix: M :=S*F –1;

−

Figure 10.
Different strategies
for DRBEM with

ℋ-Matrix
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5.1 Example 1
Some symbols will be applied for simplicity in tables and figures, which represent the
following quantities:

• DOFs: degrees of freedom.
• T: time consuming.
• HM: host memory consuming.
• DM: device memory consuming.
• SR: speedup rate.
• R: ratio of the amount of memory consumed.
• M/Tra: ratio of the amount of time consumed by traditional and MHDM.
• P/Tra: ratio of the amount of time consumed by traditional and PHDM.

In this example, the shaft model is involved for testing time and memory consumption
with the proposed methods in this paper. The consumption in time and memory space
from traditional DRBEM method and FMM algorithm are also presented for
comparison.

The shaft is discretized into six different number DOF as Figure 11 shows. The
time-consumption and memory space requirement for host and device will not stop
counting until the coefficient matrix M in Equation (6) is achieved, and the peak value
will be recorded as result for comparison in this section.

The Table II presents the detail situation for time-consuming and speedup ratio in
different DOF with respect to PHDM, MHDM, FMM and traditional DRBEM, Figure 12
reveals the discipline and tendency at the same time. We can conclude that the former
two methods have obvious advantage with respect to traditional DRBEM in efficiency
either in time or in memory aspects. As the DOF added, the time needed for traditional
DRBEM and FMM increases rapidly while the other two methods grow gently, which
could be observed from A-1 in Figure 12. We can also observe that MHDM performs
better in efficiency than PHDM, and the effect will be much more obviously as the DOF
increasing. At the same time, the time comparison of CPU and CUDA with HDM
computation is listed in A-1, and the advantage of CUDA could be clearly observed. For

DOFs = 3,348

DOFs = 7,257

DOFs = 15,300 DOFs = 52,684

DOFs = 10,584

DOFs = 4,995

Figure 11.
Shaft with different
number degrees of
freedom
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DOFs 3,348 4,995 7,527 10,584 15,300 52,684

Traditional
T(min) 16.632 58.668 183.85 576.47 / /
HM(MB) 438.7 1,012.43 2,106.5 4,519.05 /

FMM
T(min) 15.637 78.92 216.15 928.3 2741 /
HM(MB) 48.32 61.246 96.47 142.39 205.4 911.83

PHDM
T(min) 4.941 11.241 25.91 78.197 159.57 1,699.4
SR 3.366 5.219 7.09 7.372 / /
HM(MB) 156.2 362.8 556.8 832.1 1,044.3 4,137.9
R 0.356 0.358 0.264 0.18 / /

MHDM
T(min) 2.432 6.719 17.27 48.246 / /
SR 6.839 8.732 10.346 11.949 / /
HM(MB) 298.7 658.46 1,353.3 2,843.5 / /
R 0.68 0.65 0.64 0.62 / /
DM(MB) 87.5 201.3 411.2 874.2 / /

MHDM-CPU
T(min) 3.757 8.413 20.975 55.46
SR 4.427 6.973 8.765 10.394

PHDM-CPU
T(min) 6.431 13.694 29.115 84.583 227.28 2,473.4
SR 2.586 4.284 6.315 6.815

Table II.
Detail data for

time and memory
consuming
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MHDM (Device)
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Figure 12.
Comparison of

time-consuming
and speedup rate

in different degrees
of freedom
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explaining the effect of acceleration for CUDA method, the speedup ratio are presented
in A-2 of Figure 12 (the detail analysis of the inversion efficiency solved by CPU and
CUDA, respectively, can refers to Section 4). MHDM apparently has superior speedup
ratio with respect to PHDM. With the increasing of the DOF, the speedup ratio of
MHDM with respect to different DOFs grow almost linearly from 6.839, 8.732, 10.346 to
11.949. However, PHDM’s speedup ratio grow much gentler from 3.366, 5.219, 7.09, to
7.372. It is worth noting that because of MMP computation during simulation process,
FMM will consume much more time even comparing with traditional method (the time
consuming is too long to be listed in table while the DOF up to 52,684).

Besides the efficiency, memory-consuming situation is also noticed in this example.
It can be easily observed that the methods proposed in this paper could save lots of
space while evaluating final results. The peak consuming of host and device memory in
each method is listed in B-1 of Figure 12, and the ratios of host memory consumption of
novel methods by traditional DRBEM are also presented in B-2. The storage
requirement of PHDM is just about one-third of traditional DRBEM, and would
decrease to about one-fourth with the increment of DOF. Under the same situation,
MHDM’s requirement for host memory is about half of traditional DRBEM, and the
ratio would also decrease with the increment of DOF. However, MHDM will consume
device memory space for applying parallel inverse algorithm at the same time, which
limit the scale of solvable problems. For this reason, the limitation of DOF involved
with MHDM in our computer is about 14,000, and the capability for PHDM is about
1.0E5. The memory consuming of FMM algorithm is also presented. According the
result data, it can be found that FMM would occupy very small amount of storage
space with respect to other methods, which is a big advantage of this algorithm. But
comparing the methods proposed in this paper, its efficiency is too low to be involved
for dealing with large-scale problems.

5.2 Example 2
Due to the approximation in each admissible cluster while introducing hierarchical
structure for improving efficiency and saving memory consuming, the relative error
will be involved and transferred to the final results. In this paper, the relative error ∈ is
obtained according to Equation (16), HDM denotes the result data from proposed
method (PHDM or MHDM) and Tra refers to traditional DRBEM.

This example is discussing the accuracy of natural frequencies obtained through
methods mentioned in this paper, and the results from ANSYS and Hyperworks
in the same situation are presented for comparison. In the following, we also
simply discuss the effect of the number of internal point (IP) for the accuracy.
The pedestal body, as the Figure 13 shows, will be discretized into different DOFs
for this example:

e ¼ HDM�Tra
Tra

(16)

The fore ten order natural frequencies with MHDM, PHDM, traditional DRBEM is
listed in Figure 14, and same for Ansys and Hyperworks. According to Figure 14(a)
and (b) are the result comparison with different methods in 5,076 and 10,336 DOFs,
respectively. It can be found that the gap for proposed methods, with respect to the
results obtained from FEMs, is bigger than the traditional DRBEM. With increasing
the DOFs, the gap would be narrowed, which can be observed from the contrast in
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Figure 14(a) and (b). The frequencies of fourth, sixth, seventh order in PHDM, and of
fourth, fifth, ninth order in MHDM, are obviously getting closer to the results in Ansys
and Hyperworks with the number of DOFs increasing.

Figure 14(c) and (d) involve different number of IPs, 101 and 214, respectively, for
discussing the effect for accuracy by IP in DRBEM. The figure c has obviously nice
performance except for the eighth order frequencies which has a big shift with
respect to Anasys’s and Hyperworks’s results. As the IPs improved, Figure 14(d) gets
more superior performance than all the other situations. Although the number of IPs
indeed has positive effect for the accuracy in general, but this kind of effect is not
immovable. Actually, the accuracy of results evaluated with DRBEM is not bounded
to the number of IPs, the accuracy will greatly increases for a small increment
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of number of IPs but decreases as introducing too much. The detail description of
choosing collocation points refers to Chirino et al. (1994) and Agnantiaris et al. (1996),
in which the view that a small number of collocation points improve the accuracy of
the solution is proved.

The relative error in natural frequencies corresponds to traditional DRBEM for
proposed strategies are presented in Figure 15. M_RE refers to MHDM relative error and
P_RE refers to PHDM. It is obvious that P_RE performs much more stable than M_RE,
and becomes more gently as the DOF increasing. The computation between hierarchical
matrix and entrywise matrix would cause instability error, as the specific high value in
fifth shows. It worth noticing that for high-quality and uniform mesh procedure, the
accuracy would be slightly affected by the number of DOFs and also the relative error
would not decreased dramatically through increasing the number of DOFs.

6. Conclusion
For solving free-vibration problems, DRBEM has higher efficiency than traditional
time-domain or frequency-domain BEM. In this paper, the approximation partition
technology ℋ-Matrices with ACA is introduced for accelerate free-vibration analysis
procedure. PHDM and MHDM strategies are presented and discussed in terms of both
time and space complexity regarding to various computation situations. The former
strategy applied ℋ-Matrices structure into all involved integration matrices, which
ensures the maximum compression of memory requirement and improves the
efficiency with respect to traditional method. Then, some other situations demand high
efficiency and accuracy are considered by MHDM which utilizes CUDA techniques to
guarantee inversion operation efficiency, then performs arithmetic between different
types of matrices for avoiding complicate truncation operation. Also the serial
recursive ℋ-Matrices inversion algorithm are introduced in PHDM to accelerate the
computation process (the effect comparison of the two inversion method is discussed in
Section 4). The time and memory consumption of serial examples are counted in the last
section, and compared with traditional and FMM methods to verified the effect of
method. The accuracy of the strategies proposed in this paper is also discussed by
detail comparison with commercial software. In the future, the parameters’ effect, such
as nmin, η during the partition process in hierarchical matrices, will be discussed with
respect to efficiency and accuracy. The possibility about hierarchical matrices arithmetic
in parallel formulation will be also studied.
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ri is the components of the vector r that connecting any two points of boundary nodes or interior
points, and ni is the components of the normal outward vector n at the point that the particular
solution is evaluated, and δij is the Dirac function.
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