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Highlights

• We develop a nonsingular BEM isogeometric analysis formulation.
• Its accuracy is demonstrated to be as good as the standard formulations.
• A modified set of Greville abscissae are used with a simple method of merging equations that does not adversely affect accuracy.

Abstract

A multi-patch nonsingular isogeometric boundary element method (IGABEM) for 3D problems is presented that provides
accurate solutions for multi-patch IGABEM. In order to conveniently implement this method, based on the Greville abscissae, a
new collocation method moves the first and the last collocation points of each parametric direction inside of their patches, and a
simple method for merging equations handles the extra equations. The numerical results verify the accuracy and efficiency of the
present method by comparing it to the conventional IGABEM.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Isogeometric analysis (IGA) [1,2] uses the same basis functions for the geometric modeling and computational
analysis. After over a decade of continuous development, IGA has become one of the most efficient methods for bridg-
ing the gap between computer-aided design (CAD) and engineering analysis. The initial implementations of IGA used
non-uniform rational B-splines (NURBS) to address a broad range of applications, including structural vibration [3],
fluids [4,5], fluid–structure interaction [6–8], cables and shells [9–12], contact [13,14], fracture [15], shape optimiza-
tion [16,17], topology optimization [18,19]. Although NURBS is a standard technology in CAD and IGA, there are a
growing number of new spline technologies supporting local refinement that have been recently used in IGA, including
T-splines [20,21], PHT-splines [22] hierarchical B-splines or NURBS [23,24] and Powell–Sabin splines [25,26].
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While the FEM–IGA has achieved great success and has attracted most of the IGA researchers, a remaining
critical challenge is how to efficiently and exactly parameterize a volumetric domain from its boundary [27,28]. Three
dimensional problems need trivariate NURBS solids for analysis but CAD systems use a boundary representation
where only bivariate NURBS surface is available. In order to solve this problem, the boundary element method
(BEM) [29,30] was applied to IGA for several classical partial differential equations, e.g. Laplace equation [31],
elastostatics [32,33], potential flow [34], Helmholtz problem [35] and wave-resistance problem [36]. The isogeometric
BEM is called IGABEM for short in this paper.

Unlike the FEM, the BEM uses the fundamental solutions to construct boundary integral equations (BIEs) to solve
boundary value problems. The fundamental solutions are usually of the type O(1/rα), resulting in nearly singular and
singular integrals that cannot be accurately evaluated by standard Gaussian quadrature. Accurate and efficient compu-
tation of these nearly singular and singular integrals plays a crucial role in the IGABEM as well as in the BEM. For
singular integrals (r = 0), the proposed methods include, but are not limited to, analytical methods [37,38], degenerate
mapping methods [39], radial integration methods [40,41] and non-linear transformation methods [42–44]. For nearly
singular integrals (r is very close to 0), an equally broad range of methods are available, including domain division
methods [45,46], semi-analytical and analytical methods [47,48], and a series of transformation methods [49–55].

Regardless of which singularity-removal method is used, the complexity of the implementation and the
computational cost will increase to a certain degree. Fortunately, careful studies of the BIE formulations have revealed
that the BIEs can be recast in weakly-singular, or even nonsingular forms. Cruse [56] created a weakly-singular
form by expressing the free term coefficient matrix Ci j . Cruse and Aithal [57] developed a nonsingular BIE using
Taylor series expansions, but some terms of the integrands are still nearly singular. Liu et al. [58,59] proposed several
identities for the fundamental solutions and applied them to weakly-singular BEM to derive nonsingular BIEs for
potential and elastostatic problems [60]. These nonsingular forms need to compute the derivatives of the boundary
conditions (e.g. potential, displacement), some of which are unknown and not easy to obtain. In recent years, a new
nonsingular BEM was presented by Klaseboer et al. [61,62]. Heltai et al. [63] extended the work of Klaseboer et al.
to the single-patch IGA for 3D Stokes flows, and demonstrated the validity of the nonsingular IGABEM.

In this paper, representations of the displacement derivatives and stresses in 3D elastostatics from the boundary
displacements and tractions are derived, and they are combined with the nonsingular BEM and IGA to implement a
multi-patch nonsingular IGABEM. The paper is organized as follows: Section 2 provides a brief overview of NURBS
fundamentals. Section 3 summarizes the boundary integral equations for 3D elastostatics. Section 4 presents the
nonsingular IGABEM and its implementation in detail. Section 5 provides numerical examples to demonstrate the ef-
ficiency and accuracy of the nonsingular IGABEM. Finally, conclusions and future research is proposed in Section 6.

2. An overview of NURBS fundamentals

Non-uniform rational basis splines (NURBS) are commonly used in computer-aided design (CAD) and computer
graphics (CG) for generating and representing curves and surfaces [64]. NURBS are constructed from B-splines. The
coefficients of these basis functions are points in physical space, referred to as control points, determine the shape of
the spline curve. A knot vector Ξ , which determines where and how the control points affect the curve, is a sequence
of non-decreasing real numbers representing parametric coordinates of the curve:

Ξ = {ξ1, ξ2, . . . , ξn+p+1}, (1)

where p is the order of the B-spline and n is the number of basis functions constructing the B-spline curve. The
interval [ξ1, ξn+p+1] is called a patch, and the knot interval [ξi , ξi+1] is called a span.

Given a knot vector, the B-spline basis functions are defined recursively for zero order (p = 0),

Bi,p(ξ) =


1 if ξi ≤ ξ < ξi+1,

0 otherwise,
(2)

and for non-zero order (p > 0)

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi
Bi,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,p−1(ξ). (3)
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Given a control net consisting of the control points Pi, j , a bivariate B-spline surface is obtained as the tensor product
of two B-spline curves with knot vectors Ξ = {ξ1, ξ2, . . . , ξn+p+1} and H = {η1, η2, . . . , ηm+q+1},

S(ξ, η) =

n
i=1

m
j=1

Bi,p(ξ)B j,q(η)Pi, j , (4)

where Bi,p(ξ) and B j,q(η) are univariate B-spline basis functions of order p and q, corresponding to knot vectors Ξ
and H. The patch for the surface is now the domain [ξ1, ξn+p+1] × [η1, ηm+q+1].

NURBS basis functions are obtained from B-splines by assigning a positive weight wi to each basis function:

Ni,p(ξ) =
Bi,p(ξ)wi

n
j=1

B j,p(ξ)w j

. (5)

A NURBS surface of order p in the ξ direction and order q in the η direction is a bivariate piecewise rational
function of the form

S(ξ, η) =

n
i=1

m
j=1

Bi,p(ξ)B j,q(η)wi, j Pi, j
n

k=1

m
l=1

Bk,p(ξ)Bl,q(η)wk,l

, (6)

where wi, j is the weight value corresponding to the tensor product Bi,p(ξ)B j,q(η). If all weights are set to 1, Eq. (6)
has the same form as Eq. (4).

Introducing the piecewise rational basis functions

Ni, j (ξ, η) =
Bi,p(ξ)B j,q(η)wi, j Pi, j

n
k=1

m
l=1

Bk,p(ξ)Bl,q(η)wk,l

, (7)

the surface Eq. (6) may be written in the familiar shape function notation as

S(ξ, η) =

n
i=1

m
j=1

Ni, j (ξ, η)Pi,j. (8)

Some of the important properties of the function Ni, j (ξ, η) are summarized as below:

1. Nonnegativity: Ni, j (ξ, η) ≥ 0 for all i , j , ξ and η;
2. Partition of unity:

n
i=1

m
j=1 Ni, j (ξ, η) = 1 for all (ξ, η);

3. Local support: if (ξ, η) is outside the span domain of [ξi , ξi+p+1) × [η j , η j+q+1), Ni, j (ξ, η) = 0;
4. Continuity: the interior of knot span domain is continuous up to C∞, and the continuity between knot spans are

C p−k and Cq−e where k and e are the multiplicity of the knots in the ξ and η directions, respectively.

3. Boundary integral formulation

The summation convention is used for repeated lower-case Latin indices in the remainder of the paper, where the
summation is carried out over the range of the repeated subscript unless explicitly indicated otherwise.

For a physical domain Ω with a boundary Γ , in the absence of body forces, the discrete form boundary integral
equation (BIE) for linear elastostatics is formulated as

Ci j (s)u j (s) +


Γ

Ti j (s, x)u j (x)dΓ (x) =


Γ

Ui j (s, x)t j (x)dΓ (x), (9)

where s is a source point (collocation point), x is a field point (integration point), u j (x) and t j (x) are the j th component
of the displacement and the traction at field point x, Ci j (s) is the free term coefficient depending on the boundary
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geometry at the source point s, and Ui j (s, x) and Ti j (s, x) are the fundamental solution kernels for 3D problems
which are given as

Ui j (s, x) =
1

16πµ(1 − ν)r
{(3 − 4ν)δi j + r,ir, j }, (10)

Ti j (s, x) = −
1

8π(1 − ν)r2


∂r

∂n
[(1 − 2ν)δi j + 3r,ir, j ] − (1 − 2ν)(r,i n, j − r, j n,i )


, (11)

where r = |x − s| is the distance between the field point and the source point, r,i =
∂r
∂xi

is the partial derivative in the
i th direction, ni is the i th component of the unit outward normal n, ν is Poisson’s ratio, µ is shear modulus, and δi j is
the Kronecker delta.

If the boundary is discretized into E elements and each element contains A nodes, then the discrete form of
Eq. (9) is

Ci j (s)u j (s) +

E
e=1

A
α=1

ueα
j (x)H eα

i j (s, x) =

E
e=1

A
α=1

teα
j (x)Geα

i j (s, x), (12)

in which ueα
j (x) and teα

j (x) are the j th component of the displacement and traction of the αth node of element e, and

H eα
i j (s, x) =


Γe

Ti j (s, x)N eα(x)dΓ (x), (13)

Geα
i j (s, x) =


Γe

Ui j (s, x)N eα(x)dΓ (x), (14)

where Γe is the domain of element e, and N eα(x) is the shape function of the αth node of element e at point x.
Collocating source points (nodes) on the boundary and applying Eq. (12) at each source point, by merging the

corresponding coefficients, the matrix form of the BIE system can be assembled as

Hu = Gt, (15)

note that the entries of matrix H are comprised of Ci j (s) in Eq. (12) and H eα
i j (s, x) in Eq. (13).

Assigning all unknown displacements and tractions to the left hand side, and other known ones to the right hand
side, Eq. (15) can be reassembled to the familiar linear algebraic equation system

Aq = b, (16)

where q is the vector containing the unknown u and t components, and A is the associated collection of coefficients
from H and G.

4. Non-singular IGABEM for three-dimensional elastostatics

The fundamental solution kernels Ui j (s, x) and Ti j (s, x) in Eqs. (10) and (11) contain terms proportional to 1
r and

1
r2 respectively. These terms tend to infinity when the distance between the source point and the field point tend to 0
(r → 0), which causes the singularity of Eqs. (14) and (13). When r equals 0, Eq. (13) is a strongly singular integral
and Eq. (14) is a weakly singular integral; when r is very close to 0 (r ≠ 0), both of Eqs. (14) and (13) are nearly
singular integrals. In the conventional BEM, various singularity-removal methods are used to evaluate these singular
integrals [37–55] to achieve accurate analysis results. Instead of using these methods, a more accurate and efficient
nonsingular BEM is adopted and applied to IGA in this paper.

4.1. The IGABEM

The major difference between the IGABEM and the conventional BEM is that the summation
A

α=1 in Eq. (12)
involves the control points instead of nodes. In the parametric coordinate system (ξ, η), the displacements and tractions
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(a) Isogeometric element. (b) Lagrange element.

Fig. 1. Isogeometric element vs. Lagrange element for a 1 × 1 single-patch surface model. Quadratic elements are used. Red points are the control
points of the purple isogeometric element, and blue points are the nodes of the purple Lagrange element. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

at point x(ξ, η) are evaluated from the control point values using the formula

ui (ξ, η) =

A
α=1

Nα(ξ, η)uα
i , (17)

ti (ξ, η) =

A
α=1

Nα(ξ, η)tαi , (18)

where α is the αth control point of the element.
A comparison between isogeometric elements and Lagrange elements is shown in Fig. 1, with a patch containing

4 quadratic elements (order p = 2), and both the knot vectors in ξ and η are [0, 0, 0, 0.5, 1, 1, 1]. The left-bottom
element is the objective element. In the isogeometric element, some of the control points are outside the element (in
general, the control points are not necessarily in the problem domain) and the continuity between the elements can
reach C p−1 (C1 for the current example). In the Lagrange element, all nodes are in the element domain, and the
continuity between the elements is always C0 no matter the degree of elements. Another notable difference is that
the total number of control points in the isogeometric mesh is much less than the number of nodes in the Lagrange
mesh (16 vs. 25 in this example), meaning that the number of equations for IGABEM is much smaller than for the
traditional BEM for the same size, degree, and number elements.

4.2. The nonsingular IGABEM formulation

4.2.1. Nonsingular BIE
In the BIE Eq. (9), the free term coefficient Ci j (s) may be written as

Ci j (s) = −


Γ

Ti j (s, x)dΓ (x). (19)

Applying the above equation in Eq. (9), the following weakly-singular form of the BIE is obtained
Γ

Ti j (s, x)[u j (x) − u j (s)]dΓ (x) =


Γ

Ui j (s, x)t j (x)dΓ (x). (20)

Using the fourth identity for the elastostatic problems [60],
Γ

Ti j (s, x)(x(x)k − x(s)k)dΓ (x) = E jkpq


Γ

Ui p(s, x)nq(x)dΓ (x), (21)
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Fig. 2. Local orthogonal system for evaluating the derivatives of displacements.

the resulting formulation is
Γ

Ti j (s, x)u j,k(s)(x(x)k − x(s)k)dΓ (x) = E jkpqu j,k(s)

Γ

Ui p(s, x)nq(x)dΓ (x), (22)

where x(x)k and x(s)k are the kth components of the physical coordinates at x and s respectively, nq(x) is the qth
component of the outward normal at x, and E jkpq is the elastic modulus tensor.

Subtracting Eq. (22) from Eq. (20) gives the nonsingular form of the BIE,
Γ

Ti j (s, x)[u j (x) − u j (s) − u j,k(s)(x(x)k − x(s)k)]dΓ (x)

=


Γ

Ui j (s, x)[t j (x) − E jkpqu j,k(s)nq(x)]dΓ (x). (23)

Due to E jkpqu j,k = E pq jku j,k = σpq , the above formulation can be expressed as
Γ

Ti j (s, x)[u j (x) − u j (s) − u j,k(s)(x(x)k − x(s)k)]dΓ (x)

=


Γ

Ui j (s, x)[t j (x) − σ jk(s)nk(x)]dΓ (x), (24)

which is equivalent to the nonsingular form of BIE in [60] and more convenient for implementation. The key issue
associated with using Eq. (24) is how to evaluate u j,k(s) and σ jk(s) from the displacements and tractions.

4.2.2. Stress evaluation
The traction–recovery method [45] is modified to evaluate boundary stresses in the current IGABEM formulation.

Following their development, a local Cartesian coordinate system x i is defined as shown in Fig. 2, where x1 and x2
are tangential to the surface and x3 is directed in the outward normal direction. In order to concisely describe the
formulation, the notation (ξ1, ξ2) replaces (ξ, η) for the parametric coordinates.

The derivatives of the parametric coordinates are

∂ξ1

∂x1
=

1
m1

,
∂ξ1

∂x2
=

− cos θ

|m1| sin θ
,

∂ξ2

∂x1
= 0,

∂ξ2

∂x2
=

1
|m2| sin θ

, (25)

where mk and the angle θ are given as

|mk | =


∂x1

∂ξk

2

+


∂x2

∂ξk

2

+


∂x3

∂ξk

2

,

cos θ =
1

|m1||m2|

∂xi

∂ξ1

∂xi

∂ξ2
.

(26)
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The local displacements and tractions are expressed in terms of the global displacements and tractions

ui = L i j u j , t i = L i j t j , (27)

in which L i j are entries of the rotation matrix L

L =


1

|m1|

∂x1

∂ξ1

1
|m1|

∂x2

∂ξ1

1
|m1|

∂x3

∂ξ1

n2L13 − n3L12 n3L11 − n1L13 n1L12 − n2L11
n1 n2 n3

 , (28)

where n1, n2, and n3 are the components of unit outward normal. The transformation relationship between global and
local stresses is

σmn = Lrm Lsnσ rs . (29)

Substituting Eqs. (17), (18), (A.5)–(A.10) into Eq. (29), after some lengthy algebra, the boundary stress may be ex-
pressed in terms of the displacements and tractions of control points as

σmn = Cmnjαuα
j + Dmnjαtαj , (30)

where the coefficients Cmnjα and Dmnjα are

Cmnjα = 2µ


1

1 − ν


L1m L1n


∂ξk

∂x1
L1 j + ν

∂ξk

∂x2
L2 j


+ L2m L2n


∂ξk

∂x2
L2 j + ν

∂ξk

∂x1
L1 j


+

1
2
(L1m L2n + L2m L1n)


∂ξk

∂x1
L2 j +

∂ξk

∂x2
L1 j


∂ Nα

∂ξk
, (31)

Dmnjα = (L3m L1n + L1m L3n)L1 j + (L2m L3n + L3m L2n)L2 j +


ν

1 − ν
δmn +

1 − 2ν

1 − ν
L3m L3n


L3 j , (32)

where Nα is the basis function associated with the αth control point of the element (refer to Eqs. (17) and (18)), ν is
Poisson’s ratio, µ is shear modulus, and δi j is Kronecker delta.

4.2.3. Displacement derivative evaluation

With the help of the local coordinate system in Fig. 2, the derivatives of global displacement can be expressed as

um,n = Lrm Lsnur,s . (33)

When the subscript j does not equal 3, the local derivatives of displacements are

ui, j =
∂ui

∂x j
=

∂ui

∂ξk

∂ξk

∂x j
, (34)

where the subscript k ranges from 1 to 2. When the subscript j equals to 3, according to Hooke’s law and σ i3 = t i ,
the local derivatives of the displacements are

∂u1

∂x3
=

t1

µ
−


∂u3

∂ξk

∂ξk

∂x1


,

∂u2

∂x3
=

t2

µ
−


∂u3

∂ξk

∂ξk

∂x2


,

∂u3

∂x3
=

1 − 2ν

µ(2 − 2ν)
t3 −

ν

1 − ν


∂u1

∂ξk

∂ξk

∂x1
+

∂u2

∂ξk

∂ξk

∂x2


.

(35)
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Using Eqs. (17), (18), (27), (33), (A.17), the derivatives of displacements are expressed in terms of the displace-
ments and tractions of the control points

um,n = Amnjαuα
j + Bmnjαtαj , (36)

where the coefficient Amnjα is

Amnjα = (L1m L1 j + L2m L2 j + L3m L3 j )L1ncα1 +


ν

ν − 1
L3m + L1 j − L1m L3 j


L3ncα1

+ (L1m L1 j + L2m L2 j + L3m L3 j )L2ncα2 +


ν

ν − 1
L3m + L2 j − L2m L3 j


L3ncα2, (37)

and coefficients cα1 and cα2 are

cα1 =
∂ξ1

∂x1

∂ Nα

∂ξ1
+

∂ξ2

∂x1

∂ Nα

∂ξ2
, (38)

cα2 =
∂ξ1

∂x2

∂ Nα

∂ξ1
+

∂ξ2

∂x2

∂ Nα

∂ξ2
, (39)

and the coefficient Bmnjα is

Bmnjα =
L3n

µ


L1m L1 j + L2m L2 j +

1 − 2ν

2(1 − ν)
L3m L3 j


Nα. (40)

4.3. Collocation

The locations of the collocation points (source points) influences the accuracy and stability of the computational
results. Different collocation methods are evaluated in Ref. [27], which concludes that the Greville abscissae produce
reasonably accurate and stable results, and therefore they are used here.

In the nonsingular IGABEM, the source point outward normal needs to be computed (see nk(x) in Eq. (24)), which
is not uniquely defined if the source point is at the sharp edge or corner. To avoid this difficulty with the outward
normals in the multi-patch IGABEM, the Greville abscissae method was modified by moving the edge collocation
points inside patches. Two steps are required to implement this collocation method. First, the initial values of the
collocation points are chosen as the Greville abscissae in parameter space along each direction of all patches as

ξ i =
1
p
(ξi+1 + ξi+2 + · · · + ξi+p), i = 1, 2, . . . , n, (41)

where p is the order of the NURBS basis, n is the number of control points in the ξ direction. Then the first and the
last collocation points of Eq. (41) are moved inside the patch by

ξ1 = ξ1 + β(ξ2 − ξ1),

ξn = ξn − β(ξn − ξn−1),
(42)

where β (0 < β < 1) is a coefficient that defines how much the collocation points move inside the patch.
An example of comparison of collocation points generated by Greville abscissae method and the improved Greville

abscissae method (with coefficient β = 0.5) is shown in Fig. 3. It is easy to demonstrate that all collocation points are
inside the patches and their outward normals are only determined by the patches containing them, and the number of
control points is equal to the number of collocation points in each patch.

The number of total collocation points is usually not equal to the number of total control points when the modified
Greville abscissae are used because some control points maybe shared by multiple patches but each collocation
point only belongs to one patch. This inequality will result in the number of BIEs being greater than the number
of unknowns. To solve this problem, the equations for all the collocation points related to a single control point are
merged. For example, the index relationship (i, j, k ⇒ m) is set up for the three collocation points (C L i , C L j , C Lk)
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a b

Fig. 3. Two collocation methods: (a) Greville abscissae and (b) improved Greville abscissae. The knot vectors in both parametric directions are
Ξ = [0, 0, 0, 0.5, 1, 1, 1].

that correspond to the control point (Cm) in Fig. 4. Assume that the three BIEs in the initial assembly of Eq. (16)
corresponding to the collocation points with respect to the αth direction are

Ai1q1 + Ai2q2 + · · · + Ainqn = bi

A j1q1 + A j2q2 + · · · + A jnqn = b j

Ak1q1 + Ak2q2 + · · · + Aknqn = bk,

(43)

where i = 3i + α, j = 3 j + α, k = 3k + α. Using the index relationship (i, j, k ⇒ m), the merged BIE for the final
equation system, Eq. (16), is simply the average

1
3
(Am1q1 + Am2q2 + · · · + Amnqn) = bm, (44)

in which

Am p = Ai p + A j p + Ak p, p = 1, 2, . . . , n. (45)

If there are Q collocation points corresponding to a control point, the number of equations in Eq. (43) should be Q
and the 1

3 in Eq. (44) should be replaced with 1
Q .

4.4. Implementation

The final nonsingular system of BIEs are obtained by substituting Eqs. (17), (18), (30) and (36) into Eq. (24) to
obtain the BIE for the displacements and tractions at the control points

Γ
Tlm(s, x)Nα(x)uα

m(x)dΓ (x) − Nα(s)uα
m(s)


Γ

Tlm(s, x)dΓ (x)

−


Amnjαuα

j (s) + Bmnjαtαj (s)
 

Γ
Tlm(s, x)x(x)ndΓ (x)

+


Amnjαuα

j (s) + Bmnjαtαj (s)


x(s)n


Γ

Tlm(s, x)dΓ (x)

=


Γ

Ulm(s, x)Nα(x)tαm(x)dΓ (x) −


Cmnjαuα

j (s) + Dmnjαtαj (s)
 

Γ
Ulm(s, x)nn(x)dΓ (x). (46)

Note that the terms taken outside of the integrals simplify the implementation.
In the numerical implementation, the first term of left hand side and right hand side (called field point term for

short) in Eq. (46) are computed in each element and then assembled into left hand side or right hand side of the
equation system Eq. (16) according to whether uα

m(x) and tαm(x) are unknown or known. Except for the first terms,
all other terms (called source point terms for short) consist of a polynomial with respect to the displacements and
tractions of the source points (collocation points) and an integral with respect to the field points. The integrals are
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Fig. 4. An example of 3 collocation points vs. 1 control point.

Table 1
Compared displacement components of different surfaces.

Surface
x = 0 x = 1 y = 0 y = 1 z = 0 z = 1

ux ux ux ux
uy uy uy uy uy
uz uz uz uz uz

evaluated over each element and summed to get the integral over the entire boundary Γ . The integrals are then
multiplied by the appropriate polynomial terms and assembled into the equation system according to uα

j (s) and tαj (s).

Although

Γ Tlm(s, x)dΓ (x) = −

1
2δlm (x on a smooth boundary) in terms of the extended first identity in [59], this

identity cannot be used in Eq. (46) because the nonsingular BEM needs to use the numerical computational errors
of


Γ Tlm(s, x)dΓ (x) to compensate for the numerical errors of the other integrals. The procedure of the multi-patch

nonsingular IGABEM analysis is illustrated in Fig. 5.
Nonsingular does not mean that the gradients of the integrands are small or that lower order Gauss integration will

accurately evaluate the integrals. The element sub-division method [39] is therefore used to accurately evaluate the
integrals when the source and integration points are in the same element.

5. Example calculations

The numerical examples were run on a single processor desktop computer with an Intel Core i7 960 3.2 GHz CPU
with 12 GB of RAM. The operating system was Linux Ubuntu 12.04, and the compiler was gfortran.

5.1. Unit cube model

The patch test using a unit cube with 6 patches is from Scott et al. [33]. The boundary conditions are illustrated
in Fig. 6. Young’s modulus E is 104, and the Poisson’s ratio ν is 0.3. In this model, the analytical solutions of
displacement in x, y and z directions of a point s on the cubic surfaces are 0.1x(s), 0.03y(s) and 0.03z(s).

Meshes of 1×1, 2×2, 3×3 and 4×4 quadratic, cubic and quartic (p = 2, p = 3, and p = 4) 2D NURBS boundary
elements for each patch are used in the computations and shown in Fig. 7. The knot vector spans are equally spaced.
The mean relative error and the maximum relative error (for short named as mean error and max error below) of the
node displacement components are given in Table 1. When a point is shared by several surfaces, only the common
displacement components of those surfaces in Table 1 are compared.

5.1.1. Influence of shift coefficient β

We chose different β values in Eq. (42) from 0.1 to 0.7 to analyze the influences of the coefficient β in the
nonsingular IGABEM. A 8 × 8 Gauss quadrature rule is used in Mesh 2 and Mesh 4 with quadratic, cubic and
quartic NURBS elements. The errors are shown in Fig. 8.
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Fig. 5. Flowchart of the multi-patch nonsingular IGABEM analysis.

Fig. 6. A patch test cube model.

In Fig. 8(a), the minimal mean errors of Mesh 2 and Mesh 4 are at β = 0.6 and β = 0.7 respectively, and both of
the minimal max errors are at β = 0.5. In Fig. 8(b), the minimal mean errors of Mesh 2 and Mesh 4 are at β = 0.6
and β = 0.5 respectively, and both of the minimal max errors are at β = 0.5. In Fig. 8(c), the minimal mean errors



82 Y.J. Wang, D.J. Benson / Comput. Methods Appl. Mech. Engrg. 293 (2015) 71–91

(a) Mesh 1. (b) Mesh 2. (c) Mesh 3. (d) Mesh 4.

Fig. 7. Cube model meshes.

(a) p = 2. (b) p = 3.

(c) p = 4.

Fig. 8. Errors of different β values.

of both Mesh 2 and Mesh 4 and the max error of Mesh 4 are at β = 0.5. Based on these results, the shift coefficient
β = 0.5 performs best for the different element orders and it is used in the following examples in this paper.

The displacement results for Mesh 4 with p = 2 are shown in Fig. 9. The mean error and the max error between
the nonsingular IGABEM results and the analytical solutions are 1.3534 × 10−5 and 2.4489 × 10−4. Note that their
percent errors are approximately 0.001% and 0.02% respectively, demonstrating the high accuracy of the nonsingular
IGABEM.

5.1.2. Influence of the number Gauss points

The mean errors of Mesh 1 to Mesh 4 with number of Gauss points varied from 5 to 8 in each direction of each
element are shown in Fig. 10. The numerical solutions converge to the analytical solutions as the number of quadrature
points increase, and p = 3 and p = 4 converge faster than p = 2 as expected. This illustrates the sensitivity of the
BEM accuracy to the quadrature in comparison to FEM, where the accuracy rarely improves (and may actually decay)
once a “sufficient” number of integration points are used.
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(a) Displacement in x . (b) Displacement in y. (c) Displacement in z.

Fig. 9. Displacement results of the cube.

(a) p = 2. (b) p = 3. (c) p = 4.

Fig. 10. Errors of different Gauss points.

a

b

Fig. 11. Element sub-division schemes: (a) triangular sub-division and (b) rectangular sub-division.

5.1.3. Influence of element sub-division

As mentioned previously, when the source and integration points are in the same element, the gradients in the 1/r
and 1/r2 terms may be very high and the standard Gauss quadrature may not provide adequate accuracy. Two simple
element sub-division schemes can be used to address this problem.

The mean errors of Mesh 4 using 8 × 8 Gauss quadrature rule are shown in Table 2. The triangular sub-division
scheme achieves higher accuracy than the rectangular sub-division one because the triangular sub-division concen-
trates the integration points near the source point. With superior accuracy, the triangular sub-division scheme is used
in this study. (See Fig. 11.)
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Table 2
Mean errors of the element sub-division schemes.

Sub-division p = 2 p = 3 p = 4

Triangle 1.352 × 10−5 8.778 × 10−5 1.479 × 10−4

Rectangle 8.909 × 10−5 1.726 × 10−4 2.428 × 10−4

(a) p = 2. (b) p = 3. (c) p = 4.

Fig. 12. NSIGABEM vs. IGABEM: Error.

(a) p = 2. (b) p = 3. (c) p = 4.

Fig. 13. NSIGABEM vs. IGABEM: Time cost of integration part.

5.1.4. Nonsingular IGABEM vs. IGABEM
Mesh 4 is used to compare the nonsingular IGABEM (NSIGABEM) to the conventional IGABEM. In the

conventional IGABEM, the element sub-division technique employed by Lachat and Watson [39] is used for the
weakly singular integrals, and the weakly singular form of the T kernel in Eq. (20) with the sub-division technique is
used to complete the strongly singular integrals.

The mean errors of the NSIGABEM and the IGABEM with number of Gauss points from 5 to 8 are shown in
Fig. 12. The accuracy of the NSIGABEM is about one digit higher than that of the IGABEM. This demonstrates the
high accuracy of the NSIGABEM.

In order to compare the CPU time fairly, only the integration computation part is compared because all the other
costs are the same between the NSIGABEM and the IGABEM. The CPU time is shown in Fig. 13. The time cost ratio
of the integration is shown in Table 3. The CPU time ratio is just a little bigger than 1, which means that the efficiency
of the NSIGABEM only little lower than that of the IGABEM in integration. Furthermore, the integration takes
approximately 1/2 of the total BEM computation in general, so the extra cost of the integration of the NSIGABEM
is comparatively small. The CPU time ratio decreases as the element order increases because the number of common
terms evaluated in the NSIGABEM and IGABEM formulations increases with p in the integral evaluation.
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Table 3
Time cost ratio: NSIGABEM/IGABEM.

Ngp p = 2 p = 3 p = 4

5 1.395 1.246 1.094
6 1.450 1.289 1.157
7 1.515 1.316 1.200
8 1.550 1.318 1.201

Table 4
Results of circular cylinder model.

p NSIGABEM IGABEM
Mean error Max error Integ-time (s) Mean error Max error Integ-time (s)

2 1.871×10−4 7.000×10−4 2.064 4.151×10−4 1.340×10−3 1.304
3 1.011×10−4 5.550×10−4 4.708 2.249×10−3 8.785×10−3 3.576
4 2.319×10−4 3.900×10−4 9.021 1.746×10−4 6.150×10−3 7.256

Fig. 14. Circular cylinder model.

5.2. Solid circular cylinder model

A quarter of a solid circular cylinder is subjected to a perpendicular tension loading as shown in Fig. 14. The exact
solution of displacement in the z direction for this case is

uz(s) = T z(s)/E, (47)

where s is a point belonging to the circular cylinder.
The coarse mesh (Fig. 15), similar to the circular cylinder model in Ref. [33], has 24 NURBS elements distributed

over 6 patches. A 20 × 20 Gauss quadrature rule is used to integrate each element. Table 4 summarizes the results
where only the points on the unconstrained surfaces are used in the error evaluation of displacement in the z direction.

The mean errors and the max errors of the NSIGABEM are smaller than that of the IGABEM which demonstrates
the high accuracy of the NSIGABEM. In Ref. [33], the maximum error in radial displacement of the circular cylinder
subjected to internal pressure loading is about 1.116 × 10−3, where a cubic element and a 30 × 30 Gauss quadrature
rule is used. From Table 4, the max error of the NSIGABEM with cubic NURBS element in the press-loading direction
is only 5.550 × 10−4 which is approximate half of that in [33], and the number of Gauss points used in each element
is less than half of that in [33].

5.3. Arch model

The last example is an arch model whose bottom surfaces are fixed and the top surface is subjected uniform pressure
as shown in Fig. 16. The entire geometry consists of 18 patches. The mesh contains 72 quadratic NURBS elements
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Fig. 15. Circular cylinder mesh.

Fig. 16. Arch model.

Fig. 17. Arch mesh.

as shown in Fig. 17. The magnitude of the displacement of the NSIGABEM solution is plotted in Fig. 18(a), and an
ANSYS reference solution using 16 384 hexahedral elements is shown in Fig. 18(b). The overall displacement distri-
bution of NSIGABEM is the same as that of ANSYS and the relative error at the maximum displacement location is
about 3% demonstrating the coarse mesh accuracy of the NSIGAEBEM.
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(a) NSIGABEM. (b) ANSYS.

Fig. 18. Arch displacement result.

6. Conclusions

Traditional formulations of BEM generate integrals that are singular or weakly singular, and complicated, special-
ized integration methods are used to evaluate them numerically. Many of the methods are restricted to simple basis
functions such as linear triangles or bilinear quadrilaterals. The recent drive towards introducing isogeometric analysis
concepts into BEM has challenged these integration methods, and the expense associated with the increased number
of integration points required for accurate solutions reduces the advantages of the higher order accuracy obtained by
using basis functions from CAD.

Many nonsingular BEM have been proposed, but they have not replaced the traditional formulations for lower
order elements. This is most likely due to the comparative complexity of the integrals in their formulation compared
to the standard formulations. This paper has restructured the integrals, moving some terms outside of the integrals to
simplify their evaluation and to improve the efficiency of the calculation. The derivatives required for the nonsingular
formulation that do not appear in the standard formulations were developed in terms of the solution variables.

A modified set of Greville abscissae with the first and last points moved to the element interiors was found to
provide an accurate set of collocation points. A simple averaging technique was demonstrated to be effective for
merging the surplus collocations points along edges and corners. Test calculations show that the best value of the shift
coefficient β is 1/2.

Numerical examples have demonstrated that the nonsingular method is at least as accurate as traditional methods
of equal order, and in some cases, may be more accurate. Compared to the traditional formulation, the nonsingular
formulation appears to be only slightly more expensive overall per collocation point.

The greatest benefit of the nonsingular IGABEM is that it can be used with irregular trimmed NURBS [65,66]
where applying conventional methods for addressing the singularities are much more difficult than for regular
triangular and quadrilateral elements. The present formulation is being combined with an optimal integration method
for trimmed NURBS [67] is currently being developed and will be presented in a future paper.
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Appendix A. Expressions for the local stresses and displacement derivatives in terms of global equivalents

The local stresses and displacement derivatives are expressed in terms of global variables according to Eqs. (29)
and (33). Their derivatives, required by the nonsingular formulation, are also required, and we present their derivation
in detail here.

The local tangential strains may be expressed in terms of the derivatives of the displacements as

εi j =
1
2


∂ui

∂x j
+

∂u j

∂x i


. (A.1)
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Using Hooke’s law and eliminating the local normal strain σ 33, we obtain

σ 11 =
2µ

1 − ν
(ε11 + νε22) +

ν

1 − ν
σ 33, (A.2)

σ 22 =
2µ

1 − ν
(ε22 + νε11) +

ν

1 − ν
σ 33, (A.3)

σ 12 = 2µε12, (A.4)

where µ and ν are shear modulus and Poisson’s ratio, respectively, and the equilibrium requires that

σ 13 = t1 = L1 j t j , (A.5)

σ 23 = t2 = L2 j t j , (A.6)

σ 33 = t3 = L3 j t j , (A.7)

where L i j are defined in Eq. (28).

Taking these results and Eqs. (27) and (34) together, the local stresses in Eqs. (A.2)–(A.4) may be expressed in
terms of global Cartesian variables as

σ 11 =
2µ

1 − ν


∂ξk

∂x1
L1 j + v

∂ξk

∂x2
L2 j


∂u j

∂ξk
+

ν

1 − ν
L3 j t j , (A.8)

σ 22 =
2µ

1 − ν


∂ξk

∂x2
L2 j + v

∂ξk

∂x1
L1 j


∂u j

∂ξk
+

ν

1 − ν
L3 j t j , , (A.9)

σ 12 = µ


∂ξk

∂x2
L1 j +

∂ξk

∂x1
L2 j


∂u j

∂ξk
. (A.10)

Now the expressions of the local displacement derivatives are derived as follows. When the subscript j equals 1 or
2, substituting Eq. (27) to Eq. (34) gives

ui, j = L i j
∂u j

∂ξk

∂ξk

∂x j
. (A.11)

When subscript j equals 3, the expressions of the local displacement derivatives are a little complicated and therefore
the full derivation is given here. We first recall the stress–strain relation

σi j = λεkkδi j + 2µεi j , (A.12)

where λ and µ are the Lamé constants and

λ =
2µν

1 − 2ν
. (A.13)

According to Eqs. (A.1), (A.12) and (A.13), the local stresses σ 11, σ 22 and σ 22 may be expressed as

σ 13 = µ


∂u1

∂x3
+

∂u3

∂x1


, (A.14)

σ 23 = µ


∂u2

∂x3
+

∂u3

∂x2


, (A.15)

σ 33 =
2µν

1 − 2ν


∂u1

∂x1
+

∂u2

∂x2


+ 2µ


∂u3

∂x3


. (A.16)
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Using σ i3 = t i and Eq. (34) to replace the corresponding variables in Eqs. (A.14)–(A.16) and (35) is obtained.
Substituting Eq. (27) to Eq. (35) gives the local displacement derivatives in terms of global variables as

∂u1

∂x3
=

L1 j t j

µ
−


L3 j

∂u j

∂ξk

∂ξk

∂x1


,

∂u2

∂x3
=

L2 j t j

µ
−


L3 j

∂u j

∂ξk

∂ξk

∂x2


,

∂u3

∂x3
=

1 − 2ν

µ(2 − 2ν)
L3 j t j −

ν

1 − ν


L1 j

∂u j

∂ξk

∂ξk

∂x1
+ L2 j

∂u j

∂ξk

∂ξk

∂x2


.

(A.17)
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