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Hip Implant Design With Three-
Dimensional Porous Architecture
of Optimized Graded Density
Even in a well-functioning total hip replacement, significant peri-implant bone resorption
can occur secondary to stress shielding. Stress shielding is caused by an undesired mis-
match of elastic modulus between the stiffer implant and the adjacent bone tissue. To
address this problem, we present here a microarchitected hip implant that consists of a
three-dimensional (3D) graded lattice material with properties that are mechanically
biocompatible with those of the femoral bone. Asymptotic homogenization (AH) is used
to numerically determine the mechanical and fatigue properties of the implant, and a
gradient-free scheme of topology optimization is used to find the optimized relative den-
sity distribution of the porous implant under multiple constraints dictated by implant
micromotion, pore size, porosity, and minimum manufacturable thickness of the cell ele-
ments. Obtained for a 38-year-old patient femur, bone resorption is assessed by the dif-
ference in strain energy between the implanted bone and the intact bone in the
postoperative conditions. The numerical results suggest that bone loss for the optimized
porous implant is only 42% of that of a fully solid implant, here taken as benchmark, and
79% of that of a porous implant with uniform density. The architected hip implant pre-
sented in this work shows clinical promise in reducing bone loss while preventing implant
micromotion, thereby contributing to reduce the risk of periprosthetic fracture and the
probability of revision surgery. [DOI: 10.1115/1.4041208]

Keywords: total hip arthroplasty, cellular material, proportional topology optimization,
asymptotic homogenization, fatigue analysis

1 Introduction

As an effective treatment for osteoarthritis, total hip arthro-
plasty (THA) is successfully performed every year on over one
million patients, a number that is projected to double within the
next two decades [1]. Even in a well-functioning total hip replace-
ment, significant peri-implant bone resorption can occur as a
result of a number of factors including stress shielding and wear
debris [2]. In this work, we focus on bone resorption secondary to
stress shielding, and we do not consider wear debris despite its
role in promoting macrophages that trigger osteoclasts and initiate
bone resorption around the implant, thus resulting in loss of
implant fixation [3]. Ideally, periprosthetic stress shielding should
be avoided after primary THA so as to minimize the risk of subse-
quent periprosthetic fracture and/or complications at the time of
revision surgery. Although the survivorship of THA exceeds 95%
with a more than 10-yr follow-up [4,5], over 15% of hip prosthe-
ses still require revision surgeries [6–8], and approximately half
of revisions occur in less than 5 years [9]. Revision surgery is a
much more complex procedure than primary THA due to bone
loss around the prosthesis, which increases the complexity of revi-
sion surgery along with its failure rate. Revision surgery is associ-
ated with a tenfold increased risk of prosthetic fracture with
cemented prostheses and a fourfold increase with cementless pros-
theses [1].

The cause for bone resorption secondary to stress shielding is
that current orthopedic prostheses are made of solid metals, e.g.,
titanium-based alloys, cobalt chromium alloys, 316 L stainless
steel, and tantalum, that are much stiffer than the bone surround-
ing them [10]. When the hip is loaded during gait or other physi-
cal activities, the stiffer prosthesis is prompt to absorb a

substantial percentage of stress, thereby leaving only a smaller
portion of load transfer to the adjacent bone, which is in turn
shielded. In the past, composite materials with a low modulus of
elasticity were introduced with the goal of reconciling the elastic
property mismatch between the implant and the adjacent host
bone [11–13]. The results were not as promising due to the poor
strength and long-term durability that those implants would pro-
vide under cyclic loadings [13,14]. In addition, softer materials,
e.g., carbon fibers, used for hip replacement in the past resulted in
clinical complications, such as macrophages formation and trans-
port to the lymphatics with subsequent undesired circulation
through the vascular system [15].

Besides solids and composites, porous materials are commonly
used in orthopaedic implants, with the main purpose of promoting
bone tissue ingrowth and fixing the implant in the long term
[16,17]. So far, however, their use for load-bearing applications
has been very sporadic. Whereas conventional machining proc-
esses have shown limitations in building parts with complex
porous architecture, recent technology for additive manufacturing
(AM), such as selective laser melting (SLM), selective laser sin-
tering, and electron beam melting, gives far more design freedom
to customize structures at the microscale with complex geometry.
For example, Pattanayak et al. [18] used SLM to fabricate pure Ti
porous parts with microstructure analogous to human cancellous
bone, porosity of 55–75% and compressive strength in the range
35–120 MPa. Cheng et al. [19] used selective laser sintering to
produce Ti6Al4V materials with varying porosity that structurally
mimicked the trabecular bone of humans. Li et al. [20] utilized
electron beam melting to fabricate porous Ti6Al4V parts for bio-
medical applications. The implants feature porous microarchitec-
ture with uniform porosity of 66% and elastic modulus of only
2.5 GPa, a value close to that of human cancellous bone. Bandyo-
padhyay et al. [21] used laser engineered net shaping (LENSTM)
to build porous Ti6Al4V alloy structures with porosity in the range
of 18–32%. The modulus of elasticity varied between 7 and
60 GPa, and a 0.2% offset yield strength between 471 and
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809 MPa was adopted. All the biomedical implants cited above
are cellular with uniform pore distribution, a factor that makes
them unable of matching the graded porosity and elastic moduli
variation that occur in human bones. Further work on additive
manufacturing of porous metals for orthopaedic implants can be
found in a recent review paper [22], which also examines the state
of the art of topological design for porous metals.

Reducing bone resorption secondary to stress-shielding has
been the goal of a number of papers for more than 20 years.
Kuiper and Huiskes [23,24] were the first to optimize the two-
dimensional distribution of the elastic modulus for minimum bone
loss and probability of interface failure. Gross and Abel [25]
worked on the optimization of a hollow stemmed hip implant with
the goal of reducing stress shielding and controlling the maximum
stress in the cement, and the minimum stress in the bone tissue.
Both these works resorted to oversimplified analyses, with a prim-
itive geometry for implant and femur as well as inaccurate load-
ings and constraint conditions. Hedia et al. [26] attempted to
reduce stress shielding by designing a hip stem with three distinct
constituents, hydroxyapatite, bioglass, and collagen, materials that
are brittle with insufficient strength, hence having limited clinical
use. Fraldi et al. [27] used topology optimization for maximum
stiffness of a femur-implant assembly with the goal of reducing
stress shielding. A map of apparent densities obtained within the
prosthesis domain was presented to offer design guidelines,
whereas laser drilling was suggested to generate the required
microporosity. The choice of maximum stiffness as objective
function in their work is questionable, since only a reduction in
implant stiffness can decrease stress shielding. Besides the works
cited above, there are other approaches in the literature that use
shape optimization to streamline the outer boundary of the
implant macrogeometry [28–32].

In the recent past, a methodology was proposed for the design
of a hip implant with a graded cellular material [10]. An approach
combining multiscale analysis and structural optimization was
proposed to optimize the implant density distribution for reduced
bone resorption and bone–implant interface stress, the latter limit-
ing implant micromotion within an admissible value. The method
was applied to a planar domain that represents the implanted
femur, and optimization was achieved via an evolutionary algo-
rithm. Later, the fatigue design of the implant as well as its
in vitro performance testing were also addressed with the purpose
of improving its service life, another critical issue for hip implants
that are fully porous [33–35]. In these contributions, the design
domain was considered as planar, and the evolutionary scheme
used to find trade-off density distributions was time consuming
with outcome that might not necessarily lead to the most promis-
ing solution [36]. All these issues are here addressed.

This paper examines a fully three-dimensional (3D) domain of
the implanted femur subjected to multiple design constraints, and
presents a time-efficient computational scheme to optimally grade
the spatial distribution of its relative density. To solve the large-
scale 3D problem, we use a recently introduced scheme for topol-
ogy optimization, the proportional topology optimization (PTO)
[37], to minimize one objective function, i.e., bone resorption, and
convert the other, i.e., bone–implant interface failure, into a
design constraint that prevents bone–implant micromotion. PTO
is a gradient-free method chosen here over other stochastic and
gradient-based methods, such as solid isotropic material with
penalization SIMP [38–41] and level set [42–45], for its simplicity
and efficiency. While PTO does not require to calculate the sensi-
tivity of objective function and constraints [46], it does preserve
the flexibility to design for intermediate densities, a factor that is
relevant to the problem examined here. So far, the PTO has not
been used to solve multiscale problems of an architected material
domain where cell topology and relative density control the mac-
roscopic response, as tackled in this work. The general procedure
to tailor the hip implant architecture is presented in Sec. 2, which
is followed by a description of the homogenized mechanical prop-
erties of the 3D lattice material. Section 4 describes the extended

TO scheme for a 3D hip domain constrained by implant micromo-
tion, bone ingrowth, and manufacturing requirements [34,35,47].
The results of the optimized architecture are given in Sec. 5 for
the hip implant, followed by concluding remarks with suggestions
for future work.

2 Optimization Scheme for Graded-Density Hip

Implant With Cellular Material

Computationally designed implants with optimally graded den-
sity of cellular material involve multiscale mechanics and struc-
tural optimization subject to multiple constraints on pore size,
porosity, and strut thickness along with restrictions on the allow-
able level of implant micromotion [34,35]. Figure 1 shows the
main steps of the workflow followed here to solve the constrained
optimization problem. Finite element (FE) analysis (ANSYS,
Canonsburg, PA) is used to retrieve the mechanical properties of
the implant at each iteration. The PTO [37] is here extended to
solve a problem where constraints of pore size, porosity, and strut
thickness are converted into lower and upper bounds of element
density, with two density-update strategies constructed ad hoc to
handle the interface failure and fatigue constraints. The interface
failure constraint is also introduced to prevent bone–implant
micromotion, and the fatigue constraint is applied to the microlat-
tice structure to guarantee the strength necessary to sustain the
physiological set of mechanical loadings. The following is a
description of the main steps:

(1) A CAD model is created by processing CT-scan data from
the femur of a 38-yr-old patient. Two numeric models are
then generated, one for the intact femur and the other for
the implanted femur, as described in Sec. 3.3. The differ-
ence in strain energy density between the two is used as a
proxy for bone resorption (details in Sec. 5).

(2) The implant macrogeometry has a minimally invasive
shape that is clinically relevant to current THA, whereas a
tetrahedron-based topology defines the unit cell, although
other cell topologies can be used too. Used to tessellate the
3D implant domain (Fig. 2), this cell is selected for its ease
in mapping smoothly from the numeric mesh of the FE
model. Its relevant properties, e.g., the effective elastic
moduli and the yield surfaces under multi-axial loadings,
are obtained via asymptotic homogenization (AH), as
described in detail in Sec. 3.1 [34,35,48]. Figure 2 shows
the unit cell geometry obtained as an assembly of tetrahe-
dra, where p is the pore size, and t is the cell wall thickness;
its mechanical properties, manufacturability via additive
process as well as bone-in growth have been recently exam-
ined and proved to be suitable for load-bearing bone
replacement implants [34,35,49]. Its relative density q is
the volume fraction, given by the volume ratio of the solid
material, Vs, and the unit cell, V, as

q ¼ Vs=V (1)

(3) The homogenized properties are assigned to the numerical
model to build the global stiffness matrix, which in turn is
used to solve the boundary value problem. As a result, the
strains and stresses of both bone and implant are retrieved
to calculate the difference in strain energy density between
intact and implanted femur, a figure of merit that indicates
bone resorption (Sec. 5).

(4) A multiconstraint TO scheme that extends the previously
introduced PTO [37] is used to optimize the relative density
distribution of the elements that are associated to the 3D
domain of the implanted femur. In particular, minimum
bone resorption is converted into maximum compliance,
and the problem is solved to yield a density-continuous dis-
tribution. To prevent bone–implant micromotion, an addi-
tional constraint is applied to the interface failure. At each
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iteration, failure and fatigue analyses are performed, and
the design variables are updated to guarantee the necessary
level of strength for the implant under service physiological
conditions. In addition, the constraints of average porosity,
pore size, and minimum cell wall thickness that can be
manufactured with current additive technology are con-
verted into lower and upper bounds of relative density;
hence, they are directly taken into account during the opti-
mization process [10]. The optimal density distribution is
obtained upon convergence of the modified TO. The details
of the TO scheme are given in Secs. 4.2–4.3, and the failure
analyses are presented in Sec. 3.2.

Finally, once the optimal relative density distribution is obtained,
an in-house code is used to automatically generate the 3D lattice
distribution of the implant via Rhinoceros (Seattle, WA).
Appendix A includes the main steps for the lattice generation.
Since the manufacturing requirements identified in previous
works are here integrated in the problem formulation, the final cel-
lular architecture can be additively built with a satisfactory level
of accuracy that satisfies both bone ingrowth requirements and
manufacturing constraints [48,49].

3 Mechanics of Lattice Materials

3.1 Homogenized Properties. A fully resolved resolution of
a large lattice domain with explicit modeling of its microstructural
features can be very lengthy and time-consuming. Homogeniza-
tion schemes have been introduced to calculate the effective prop-
erties of a heterogeneous material in terms of the properties of the
representative volume element [50]. In this work, the lattice

material is replaced by an equivalent homogeneous solid with
effective properties that are here determined via AH applied to the
unit cell [51]. The effective stiffness tensor EH

ijklof the lattice are
then calculated as

Fig. 1 Flow chart of the multiscale multiconstraint PTO followed in this work for the 3D design of the hip implant

Fig. 2 Macrodomain and building block for generating the lat-
tice architecture of the hip implant
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EH
ijkl ¼

1

jVj

ð
Vs

EijmnMmnkldV (2)

where jVj is the volume of the entire unit cell, Vs is the solid part
of the cell, Eijkl is the local elasticity tensor which equals to the
elasticity tensor of the solid material and equals to zero for a void
domain. Mijkl is the local structure tensor that correlates the mac-
roscopic strain �eij to the microscopic strain eij as

eij ¼ Mijkl�eij (3)

and Mijkl is calculated as

Mijkl ¼
1

2
dikdjl þ dildjk

� �
� e�kl

ij (4)

where dij is the Kronecker delta, and e�kl
ij is the microstructural

strain corresponding to the component kl of the macroscopic strain
�eij. More details about the calculation of e�kl

ij can be found in Ref.
[52]. The microscopic stresses can be written as

rij ¼ EijklMklmn�emn ¼ EijklMklmn½ðEH
pqmnÞ

�1�rpq� (5)

The von Mises stress distribution over the microstructure is then
used to capture the yield surface of the unit cell, which is
expressed as

�ry
ij ¼

rys

maxfrvMð�rijÞg
�rij (6)

where �ry
ij is the yield strength of the unit cell, rys is the yield

strength of the bulk material, and rvMð�r ijÞ is the von Mises stress
of the microstructure corresponding to the macroscopic stress �r ij.
At each iteration, AH is used to obtain the effective mechanical
properties and relative density of each element. To avoid repeated
AH computations and speed up the simulations within the optimi-
zation loop, we compute a priori the effective mechanical proper-
ties as a function of the relative density range [0, 1]. Figure 3

shows the effective elastic modulus, �Eii, shear modulus, �Gii, and
Poisson’s ratio, �vij of the unit cell (Fig. 2) which has cubic sym-
metry. Table 1 shows the fitting functions obtained through the
least squares method, where R-squared (R2) indicates how accu-
rately the data fit the function [53]. An R2 of 1 indicates that the
function perfectly fits the data, whereas R2¼ 0 is the worse fit.
These expressions are directly used during the optimization pro-
cess, thereby avoiding resorting to AH at each iteration.

3.2 Fatigue Failure of Lattice Materials. Since the femur is
typically subjected to a combination of multidirectional loads that
vary cyclically with time and direction [54,55], it is essential to
develop expressions that predict the multiaxial failure of the hip
implant. For this purpose, we adopt here the Tsai-Wu failure crite-
rion [56], one candidate criterion for multiaxial failure that is typi-
cally used for composite materials and also for trabecular bone.

The Tsai-Wu failure criterion can be expressed in terms of �ri as

Fi�ri þ Fij�r i�rj � 1 (7)

where i; j ¼ 1;…; 6 and �ri are the stress components expressed in
Voigt notation, and Fi and Fij are coefficients generally deter-
mined from equibiaxial tests.

The tetrahedron-based unit (Fig. 2) here used has three planes
of symmetry such that Fij ¼ Fji: In addition, the proposed base
material is Ti6AI4V, which is biocompatible, additively manufac-
turable, and commonly used in orthopedics, with almost equal ten-
sile and compressive yield strengths, i.e., Fi ¼ 0. Hence, Eq. (7)
can be expanded and reduced to

F11�r2
1 þ F22�r2

2 þ F33�r2
3 þ F44�r2

4 þ F55�r2
5 þ F66�r2

6

þ2F12�r1�r2 þ 2F13�r1�r3 þ 2F23�r2�r3 � 1 (8)

Assuming for uniaxial tension that the yield strength along the
three principal directions is �ry

1, �ry
2; and �ry

3, and the shear strength

in the three planes of symmetry is �ry
4, �ry

5; and �ry
6, we can write

Fii ¼
1

ð�ry
i Þ

2
; i ¼ 1;…; 6 (9)

As previously written, the coefficients F12, F13, and F23 can be
determined via equibiaxial tests. If the failure strength in equi-
biaxial tension are �r1 ¼ �r2 ¼ �ry

b12, �r1 ¼ �r3 ¼ �ry
b13, �r2 ¼ �r3 ¼

�ry
b23 then Eq. (9) reduces to

Fij ¼
1

2ð�ry
bijÞ

2
1� ð�ry

bijÞ
2 Fii þ Fjjð Þ

h i
; i; j ¼ 1;…; 3 and i 6¼ j

(10)

To design the lattice material against fatigue failure under multi-
axial loadings, the Soderberg criterion can be used such that

�rmk k
�ryk k þ

�rak k
�rek k ¼

1

SF
(11)

where kk denotes the second norm of the vector, and �rm and �ra

are the mean and alternating macroscopic stresses given by

�rm ¼ �rmax þ �rmin

2
; �ra ¼ �rmax � �rmin

2
(12)

where �rmax and �rmin are the multiaxial macroscopic stresses that
cause the highest and lowest values of the von Mises stress in the

Fig. 3 Effective mechanical properties of tetrahedron-based
unit cell; Es is the elastic modulus of the fully solid material

Table 1 Effective mechanical properties of tetrahedron-based
unit cell as a function of relative density

Fitting function R-squared (R2)

�Exx

Es
¼

�Eyy

Es
¼

�Ezz

Es

0:8861q2 þ 0:0928qþ 0:0127 0.9998

�Gxy

Es
¼

�Gyz

Es
¼

�Gxz

Es

0:4517q2 � 0:1043qþ 0:0154 0.9984

�vxy

vs
¼ �vyz

vs
¼ �vxz

vs

0:5352q3 � 0:4307q2 þ 0:3466qþ 0:5526 0.9988
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microstructure. The yield strength �ry is calculated through Eq. (6)
and the endurance limit is obtained as

�re ¼ �ry res

rys
(13)

where rys and res are, respectively, the yield strength and the
endurance limit of the bulk material. More details can be found in
Refs. [33] and [48].

3.3 Numerical Model. Figure 4(a) shows the 3D reconstruc-
tion of the femur from the CT scan data of a 38-yr-old male
patient, taken from a dataset of last-generation imaging with reso-
lution lower than modern CT scans. Inhomogeneous material
properties of the bone tissue (Fig. 4(b)) are mapped to each voxel
via an in-house algorithm that converts the Hounsfield units (HU)
into the elastic modulus (E) using user-defined parameters. In this
work, the effective density of 1.0 g/cm3 for water at 0 HU is
assigned to an apparent density q ¼ 0 g/cm3, and the maximal HU
value, which corresponds to the densest region of the cortical
bone, is set to an apparent density of 2.0 g/cm3 (Fig. 4(b)) [33].
The bone apparent density represents the density of solid bone
excluding the density of the fluid mass, namely the density of
blood. On the other hand, the bone effective density accounts for
the fluid mass. The relationship between apparent density and HU
is assumed as linear, hence, the effective elastic moduli of the
bone can be obtained as [57,58]

E ¼ 1904q1:64q � 0:95

E ¼ 2065q3:09q > 0:95

(
(14)

Figure 4(c) shows the boundary and loading conditions applied to
the FE model, where the distal end is fully fixed, and the X and Y

displacements of the condyle are constrained. The loads (unit: N)
written in the (X, Y, Z) coordinate system, are F1 (�486, �295.2,
2062.8), F2 (64.8, 104.4, �118.8), F3 (522, 38.7, �778.5), F4

(�4.5, �6.3, 171), and F5 (�8.1, 166.5, 836.1), and the loading
locations (unit: m) are P1 (0.035, 0.009, �0.449), P2 (�0.039,
�0.018, �0.41), P3 (�0.022, �0.01, �0.375), and P4 (0, 0, 0)
[48]. Two FE models are generated, one for the intact femur and
the other for the implanted femur. For the implant design, the hip
stem is subjected to physiological loading and boundary condi-
tions during the gait cycle that were obtained from in vivo meas-
urements on an instrumented hip [48,59,60]. In particular, one
specific patient and musculoskeletal load profile are here adopted,
as an exemplary case. This set represents the single instant of
maximum contact force of the hip in each of the walking and stair
climbing cycles of a given patient; the maximum contact force
coincides with the peak anterior–posterior force, a value that rep-
resents also the load profile for maximum torsion acting on the
shaft of the implant [59].

In this work, we select for the implant geometry that of the Tri-
lock implant (Warsaw, IN), because it clinically provides an
excellent metaphyseal fixation to the proximal femur [61,62]. The
3D geometry of the Trilock implant is thus prescribed to define
the design domain within the femur (Fig. 5). To prevent the occur-
rence of bone–implant micromotion, an interface stress constraint
is applied during the optimization scheme. The implant is consid-
ered as fully bonded in the upper part of the implant and femur.
The fully bond assumption represents the condition in which bone
ingrowth occurs at the interface of the proximal region of the
stem, which is porous with pore size and porosity tailored to meet
bone ingrowth requirements [34]. Bone tissue grows into the cel-
lular portion of the implant months after the operation, thus pro-
viding implant stability and fixation. A frictionless contact is
applied to the lower part of the implant and the femur (below the

Fig. 4 Three-dimensional femur model of a 38-year-old male patient: (a) CAD model, (b) physical model of bone apparent
density, and (c) FE model with relevant physiological loadings and boundary conditions obtained from in vivo measurements
on an instrumented hip [48,59,60]
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horizontal dash line in Fig. 5) to satisfy boundary and loading
conditions.

4 Multiconstraint Topology Optimization

4.1 Objective Function and Design Variables. Current
orthopedic prostheses are generally made of metals, such as 316 L
stainless steel, cobalt chromium alloys, titanium-based alloys, and
tantalum [10]. These solids are generally much stiffer than the
host bone tissue, e.g., the elastic modulus of Ti6AI4V is 120 GPa
but that of the stiffest femur tissue (cortical bone) is only around
19 GPa [63], thereby yielding to stress shielding [6], one major
reason for bone resorption.

A decrease in the elastic modulus of the implant can certainly
favor stress sharing between implant and femur, thus reducing the
likelihood of bone resorption secondary to stress shielding [6]. In
this work, the objective of minimizing bone resorption is
expressed as the maximization of the implant compliance subject
to the relevant constraints. Unlike conventional black-white topol-
ogy optimization (TO) [64,65], the TO here used optimizes the
relative density distribution of all elements associated with the 3D
implant domain, which is in turn mapped to a lattice architecture
of the implant satisfying the constraints imposed by implant
micromotion, additive manufacturing, and bone ingrowth [34,35].

In the numeric formulation, each element of the FE model
refers to a unit cell with relative density corresponding to the rela-
tive density of the element. By doing so, the element densities rep-
resent the design variables, and the density-based TO method can
be used to solve the optimization problem. Since the element dis-
cretization algorithm cannot guarantee that all elements within the
irregular domain of the implant have identical size, lower and
upper bounds are selected for the density of each element.

The constraints considered in the optimization refer to bone
ingrowth, manufacturing, interface failure controlling implant
micromotion and fatigue strengths, as described below:

(a) Bone ingrowth requirements: Porosity higher than 50%,
and pore size between 50 and 800 lm are applied to the
proximal portion of the implant [34,35,66].

(b) Manufacturing constraints: Pore wall thickness larger than
200 lm is enforced to respect typical minimum values of
strut thickness that can be built with current additive tech-
nology [34,35,67].

(c) Interface failure to prevent implant micromotion: Interface
failure of bone-implant FðbÞ, determined by the local shear
stress sðbÞ at point b, is imposed to be below 1 so as to
guarantee a low risk of interface failure, with F bð Þ
expressed as [33]

F bð Þ ¼ s bð Þ=ð21:6qðbÞ1:65Þ (15)

where q here is the bone density. An increase of shear stress
between the implant and the surrounding bone can increase the
risk of interface micromotion and instability [68,69]. Hence, Eq.
(15) can be used to constrain the shear stress below an allowable
value (i.e., 21:6qðbÞ1:65

), that can reduce the risk of bone–implant
micromotion. This approach has been shown effective and tested
in a previous study [33].

(d) Lattice fatigue failure: Safety factor in Eq. (11) should be
set above 2 [33] to guarantee the service life of the lattice
implant.

To include the constraints (a) and (b) directly in the optimiza-
tion process, their values are converted into lower and upper
bounds of relative density. Failure and fatigue analyses are per-
formed at each iteration, and the design variables are updated to
satisfy failure and fatigue requirements, i.e., constraints (c) and
(d). The TO problem for maximum compliance Mc qð Þ can then be
summarized in mathematical terms as

max Mc qð Þ

s:t:

SF � 2; fatigue safety factor

F bð Þ < 1; interface failure

q 2 ql
1;q

u
1

� �
;…; ql

n;q
u
n

� �n o
; relative density range

8>><
>>:

(16)
where ql

i and qu
i are the lower and upper bounds of element i

As described in the methodology section, the solution of the opti-
mization problem results in optimized elasticity gradients that
maximize the stem compliance under a number of constraints
including implant–bone interface failure and fatigue failure. These
constraints ensure that the implant is not overly compliant, and its
optimized properties can also reduce the risk of interface
micromotion.

4.2 Proportional Topology Optimization With Continuous
Design Variables. The PTO, a simple and efficient nonsensitivity
method, has been recently used to solve the classical minimum
compliance problem and the stress constrained problem for a solid
material [37]. In this paper, the PTO is extended to solve maxi-
mum compliance problem of a lattice domain under multiple con-
straints including interface failure and fatigue, two constraints that
were not previously examined [37].

For the classical minimum compliance problem, PTO globally
manages the proportional distribution of the design variables to
the element compliance values as

qopt
i ¼

RMPN
j Cq

j vj

Cq
i (17)

where qopt
i is the ith optimized element density, RM is the remain-

ing material amount that will distribute to elements, N is the num-
ber of elements, Ci is the ith element compliance, vj is the jth
element volume, and q is the proportion exponent, value between
0.25 and 3, which controls the degree of proportion between the
element density values and the compliance values [37]. After the
optimized element density is obtained at each iteration, the new
element density is updated as

Fig. 5 Design domain of the hip implant within the femur

111406-6 / Vol. 140, NOVEMBER 2018 Transactions of the ASME

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org/ on 09/11/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



qnew
i ¼ aqprev

i þ ð1� aÞqopt
i (18)

where qnew
i is the ith element density to be used in the next itera-

tion, qprev
i is the ith element density from the previous iteration,

and a is the history coefficient. From previous findings on the
compliance problem, the proportion exponent, q, and history coef-
ficient, a, are set to 1 and 0.5 [37]. We also note that in this work
we do not follow the original PTO in defining a priori the penal-
ization factor for the relationship between the Young’s modulus
and the element density [37], as this choice affects the quality of
the solutions as shown in the Appendix B. Rather at each iteration
we use the fitting functions in Table 1 that represent the effective
mechanical properties of each element of the numerical model.

4.3 Problem Formulation for Topology Optimization of
Hip Implant. For the hip implant optimization, the interface fail-
ure and fatigue are included in the PTO formulation, here
amended from the original version through the modifications
described later.

Since maximum compliance is the objective function used to
optimize the material distribution of the hip implant, the material
relative density is set proportional to the removed material
(M � RM); hence, the proportional material distribution scheme,
Eq. (17), is rewritten as

qopt
i ¼

M � RMPN
j Cq

j vj

Cq
i (19)

where M is the total material amount and the other symbols have
the meaning of those describing Eq. (17).

For the failure and fatigue analysis, since the design variables
(element relative density) are updated in the density-continuous
PTO with constraints on bone ingrowth and manufacturing
requirements, the homogenized mechanical properties, which also
include yield and fatigue, are recalculated at each iteration for all
elements. To update the design variables, two proportional strat-
egies are proposed, where the relative density is adjourned with
respect to the safety factors for interface failure (F) and fatigue
(SF), respectively, as described here

qnew
i ¼ max ql

i;
qi

max NLFið Þ

� �
; max NLFið Þ > 1

qi; max NLFið Þ � 1

8<
: (20)

and

qnew
i ¼

min qu
i ;qi

2

SFfatigue
i

 !
; SFfatigue

i < 2

qi; SFfatigue
i � 2

8>><
>>: (21)

where ql
i and qu

i are lower and upper bounds of relative density
for the ith element; NLFi is the interface failure set that includes
the interface failure for all the femur elements adjacent to the ith
element, e.g., if j is the kth neighbor femur element to the ith ele-
ment, and NLFiðkÞ is the interface failure FðjÞ which is calculated
through Eq. (15); SF is the safety factor for the lattice miscrostruc-

ture; and SF
fatigue
i is the safety factor obtained from the fatigue

analysis (Eq. (11)).

5 Results and Discussion

This section presents results for bone resorption that are in turn
used to evaluate the postoperative performance of the implant, an
important indicator of bone ingrowth after the THA. We follow
here an approach already adopted in the literature for the evalua-
tion of bone resorption [24,48,70]. The amount of bone that is
under loaded is assessed post implantation relative to the intact

femur. With this approach, bone can be considered locally under
loaded if its local strain energy U per unit of bone mass q
(S ¼ U=q) is beneath the local reference value Sref , which is the
value of S when no prosthesis is present. However, it has been
observed that not all values of underloading leads to resorption,
and a certain fraction of underloading (the threshold level s) is tol-
erated. Bone resorption starts when the local value of S is beneath
the value of ð1� sÞSref . With this definition, the resorbed bone
mass fraction mr can be obtained from

mr bð Þ ¼ 1

M

ð
V

f ðS bð Þ � ð1� sÞSrefðbÞÞqðbÞdV (22)

where mr bð Þ is bone resorption, M, q, and V are the original bone

mass, density, and volume, S bð Þ and Sref ðbÞ are the strain energy
of point b obtained from the implanted and intact femurs, respec-
tively, and s is the dead zone which is set to 0.5 [10]. f ðxÞ is a
resorptive function equal to 1 if x < 0 (i.e., f ¼ 1 if

S bð Þ � ð1� sÞSrefðbÞ<0 which means bone resorption appears at
point b), and equal to 0 otherwise. We also note that the dead
zone region is [ð1� sÞSrefðbÞ, ð1þ sÞSrefðbÞ], and in principle for

S bð Þ above ð1þ sÞSrefðbÞ bone growth occurs, but this portion of
bone growth is not captured by Eq. (22) since the stress is not
shielded in the portions of the femur where bone resorption does
not take place. On the other hand, Eq. (22) is used to calculate
bone loss for the PTO optimized implant and two baseline
implants: one made of fully solid material and the other made of a
lattice with uniform density. We note that bone resorption is the
result of bone remodeling, an evolving process that occurs over
time. In this work, a simplified scheme is adopted, where the
actual balance between bone resorption and bone deposition is not
accounted for. Further work is needed to implement a more realis-
tic evaluation of bone response as well as to refine the underlying
model assumptions.

In the problem formulation, the objective function is to maxi-
mize the implant compliance for a volume ratio of 0.5; the initial
volume ratio is set to 1 which represents the initial conditions of
uniformly solid. Convergence is reached when the following crite-
rion is satisfied

PN
i¼1

ðCk�iþ1 � Ck�N�iþ1Þ

PN
i¼1

Ck�iþ1

< e (23)

where C is the objective function value, k is the number of the
current iteration, e is a preset convergence error, and N is an inte-
ger number that are, respectively, set to 0.001 and 5, as previously
suggested [71].

Fig. 6 Convergence history of the hip stem optimization
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As shown in the convergence history plotted in Fig. 6, the num-
ber of iterations needed to reach convergence is 33. After a small
number of iterations, the values of the objective function start to
decrease, while the constraints guaranteeing mechanical perform-
ance and implant manufacturability gradually take effect. After
about 15 iterations, the objective function is 98.6% close to the
convergence value. Furthermore, Fig. 7 illustrates the relationship
between objective function and bone resorption. The number of
resorbed elements increases with the objective value and the trend
corroborates the choice of maximizing compliance in the problem
formulation subject to the necessary inequality constraints on the
strength requirements.

Figure 8(a) shows the optimized relative density distribution,
and Fig. 8(b) shows the graded lattice obtained with an in-house
code (Appendix A) that creates a lattice architecture that respects
bone ingrowth and additive manufacturing constraints, as demon-
strated in previous works [34,48]. Comparing to a preceding work
[10], where the time to solve the optimization problem of a two-
dimensional implant was almost 3 days [48], the method pre-
sented in this paper for a more realistic 3D geometry of the
implant needs only 10 min, a factor that shows the superior com-
putational efficiency of the scheme here proposed. From Fig. 8,
we observe that high density regions distribute along the main
implant axis, in the distal part and in the implant neck. This distri-
bution of relative density provides the fatigue strength required to
sustain loadings from daily activities while keeping the implant
sufficiently compliant to reduce bone resorption secondary to
stress shielding as well as sufficiently stiff to prevent implant
micromotion.

Figures 9(a)–9(c) shows a relative performance comparison
between the baseline Trilock implant and two cellular implants of
identical porosity, but dissimilar density distribution, one uniform
(relative density of 0.5), and the other optimally graded (Fig. 8). If
S is considered as the baseline of bone resorption for the fully
solid implant, we can conveniently gauge the relative benefit
between implant designs. Compared to the fully solid implant, the
uniform lattice brings a bone loss reduction of 46.8%, and the
optimal lattice of 58.1%. Bone resorption of the optimized
implant is thus 78.8% of that of the uniform lattice implant, a
figure that corresponds to a 21.2% improvement in performance.
In addition, Fig. 9(a) shows that bone resorption occurs at Gruen
zones 1, 2, 6, and 7, which are greatly reduced in Fig. 9(b) and
even further in Fig. 9(c), where bone resorption mostly occurs at
Gruen zones 6 and 7. These results show that a flexible implant

Fig. 7 Relationship between objective function and bone
resorption

Fig. 8 The TO results of the implant: (a) optimized gradients of
relative density with zoom (besides) of the implant cross sec-
tion taken through the plane shown in red and (b) correspond-
ing 3D architecture of the porous stem

Fig. 9 Bone resorption results for: (a) fully solid implant chosen here as baseline, (b) uni-
form lattice implant with relative density of 0.5, and (c) graded lattice implant, obtained for
volume fraction identical to that of the lattice implant with uniform density (Fig. 8(b))
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designed for maximum compliance via the TO extended in this
work can reduce stress shielding, and hence bone resorption. Fur-
thermore, the graded lattice implant satisfies implant micromo-
tion, failure, and fatigue requirements, besides being able to meet
bone ingrowth and manufacturing requirements. Figures
10(a)–10(c) shows the von Mises distribution of the hip implant
with fully solid material, uniform porosity, and optimized poros-
ity, respectively. The first one shows the largest area with the
highest stress, followed by the other two with the graded density
implant achieving the lower value, thus reducing stress shielding.
In addition, Figs. 11(a)–11(c) illustrates the von Mises distribu-
tion of the femur, which shows a pattern reversed to that of the
implant, a result demonstrating that stress shielding is reduced by
the implant with optimally graded density.

With respect to the implant manufacture, recent works have
demonstrated that AM can successfully build metallic lattice
structures including porous implants with complex internal micro-
architecture [34,48,72,73]. AM facilitates the fabrication of cellu-
lar implants with tailored gradients of porosity and pore
morphology that enables bone ingrowth. Investigations on the

impact of manufacturing defects and strategies to mitigate them
have been successfully developed for bone replacement implants,
thereby demonstrating the feasibility of additively manufacturing
the hip implant presented in this work [49]. A proof-of-concept of
the implant model shown in Fig. 8(b) is additively built out of
Ti6Al4V through a SLM 3D printer Laseradd DiMetal-280 (Laser-
add, Guangzhou, China). Figure 12 shows the realization where
the lattice architecture is generated to satisfy manufacturing and
bone ingrowth requirements. In addition, the elastic properties of
the solid material printed via SLM are here approximated as iso-
tropic. Local anisotropies at the strut level are disregarded, as cor-
roborated by recent investigations [74]. Because dimensional
accuracy and structural properties are strongly correlated in addi-
tively built lattice biomaterials [35,74], in this work, the lattice
architecture is generated through a compensation strategy that can
yield an as-built lattice geometry deviating max 4% from the
nominal counterpart [49]. By doing so, the predicted elastic prop-
erties are within 10% from the testing data.

The work presented in this study bears limitations that call for
follow up investigations. First, the hip stem is here treated as a

Fig. 10 Von Mises stress of the stem with (a) fully solid material, (b) uniform porosity of 0.5,
and (c) optimally graded porosity

Fig. 11 Von Mises stress distribution in the femoral tissue generated by the following
implant designs: (a) fully solid, (b) uniform porosity of 0.5, and (c) optimally graded porosity
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homogenized medium, and hence, its effective properties do not
account for the localized stress and strain that can emerge through
the interaction between the porous portion of the proximal part of
the stem and the adjacent bone tissue. Furthermore, the mechani-
cal properties of the lattice material are calculated under the
assumption that the implant domain is infinitely periodic with no
boundary effects. In addition, uncertainties that can emerge from
a number of sources including unknown origin of the patient
bone, variation of bone properties, patient gender, and age, as well
as imperfections from manufacturing are not considered. Despite
these points, the proof-of-concept implant presented in this paper
is promising and warrants an experimental campaign of mechani-
cal testing followed by clinical validation.

6 Conclusions

This paper has extended a gradient-free scheme for topology
optimization to tailor the relative density distribution of a hip
implant made of a 3D-graded lattice with tetrahedron-based cell
topology. Asymptotic homogenization has been used to calculate
its elastic, yield, and fatigue properties, expressed as a function of
relative density. Multiple constraints have been applied to the
implant micromotion, pore size, porosity, and strut thickness, of
the lattice architecture so as to satisfy bone ingrowth requirements
and the manufacturing limits imposed by current additive technol-
ogy. The implant performance has been numerically assessed
against bone resorption, a figure of merit that describes bone loss
secondary to stress shielding. The results given for postoperative
conditions, suggests that bone loss for the optimized lattice
implant is only 41.9% of that of a fully solid titanium implant.
While these findings show promise in contributing to reducing the
risk of periprosthetic fracture and the probability of revision sur-
gery, further work is required to validate them through in vitro
and clinical models.

Appendix A: Scheme for the Generation of a Graded

Lattice

The in-house code developed here for the generation of a
graded lattice structure resorts to a representation scheme typi-
cally used in computer-aided design (CAD) model. In particular,
we adopt the boundary representation (B-rep) for representing a
geometric object drawn in a CAD environment [75]. In the B-
Rep, information can be topological and geometric. The former
provides the relationship of connectivity among vertices, edges,
and faces of an object. In addition to connectivity, topological
information includes orientation of edges and faces. The latter,
i.e., geometric information, describes the actual geometric fea-
tures of the object, e.g., surfaces, curves, and points, with typical
names being face, loop, edge, and vertex. A face is a bounded por-
tion of a surface; a loop is a circuit of edges bounding a face; an
edge is a bounded piece of a curve, and a vertex lies at a point.

Figure 13 shows the B-Rep of an X-shape face here taken as a
representative example of a portion of the lattice. The X shape has
16 vertices (V1, V2,…,V16), 16 edges (E1, E2,…,E16), 1 loop (L1),
and 1 face (F1). When the coordinates of vertices are obtained and
expressed through the B-rep topological information, the CAD
model can be constructed following the sequence vertex
!edge!loop!face. With the fully acquired B-rep representa-
tion, complex geometries can be built bottom up. In this study,

Fig. 12 Titanium-based alloy implant with optimized lattice
architecture built via SLM

Fig. 13 B-Rep of an X-shape face with 16 vertices
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each mesh element of the finite element model is used to locate
the vertices, and a sequence of four steps is implemented to gener-
ate the graded lattice (Fig. 14):

(1) Element density assignment: The element density denoted
by qe is directly obtained from topology optimization and
assigned to each unit cell of the lattice.

(2) Node density calculation: The node density of an element
qn is calculated by averaging the densities of the neighbor
elements. From a given node density and node coordinates,
the vertices of a unit cell can be obtained.

(3) Unit cell construction: The information obtained in Eq. (2)
on the vertex coordinates of each unit cell, can be expressed
through its B-Rep representation (Fig. 13), from which the
unit cell can be constructed. This step is individually
repeated for each element of the mesh.

(4) Lattice generation: In the last step, Boolean operations are
used to combine all the unit cells in the lattice.

Because a computational model in a CAD system is boundary-
represented, the above procedure can be automatically imple-
mented to generate a CAD model of a lattice structure.

Appendix B: Influence of the Penalization Factor on the

Young’s Modulus

The solid isotropic material with penalization scheme is a
powerful method to determine the optimal material distribution in
a given design space for a given set of loads, boundary
conditions and constraints [37,76,77]. It commonly yields to
black-white (0/1) solutions, where the elastic modulus of an ele-
ment E qið Þ is given by

E qið Þ ¼ Emin þ qp
i E0 � Eminð Þ; qi 2 ½0; 1� (B1)

where Emin is the stiffness of soft (void) material (typically
10�9), E0 is the elastic modulus of the solid material, and p is the
penalization factor (typically p ¼ 3). By selecting a priori the
exponent p of Eq. (B1), the relationship between the Young’s
modulus and the element density is established, although this
relation may not necessarily represent the actual constitutive
relation of the material. The density distributions are then
obtained by applying a penalization factor that might not be rep-
resentative of the real material. To show this dependency, we
solve here a classical compliance problem and compared the
results obtained with two methods having different penalization
factor.

The problem is the Messerschmitt–B€olkow–Blohm beam (Fig.
15(a)), where the objective is to minimize compliance [37,77].
Figure 15(b) shows the black-and-white solution obtained with
the conventional PTO with a penalty factor of 3 [37], and Fig.
15(c) illustrates the gray solution obtained with the density-
continuous PTO with a penalty factor of 1. The former is more
compliant than the latter (266.61 versus 206.98), which is also
faster to obtain (number of iteration: 170 versus 51). The results
show that the value of the penalty factor (Eq. (B1)) that is selected
a priori has an influence on the relationship between Young’s
modulus and element density. For this reason, in this work, we do
not assume any value for p; rather as described in Sec. 3, we use
AH to establish the effective properties of the lattice as a function
of the relative density of the unit cell and use these properties in
the optimization process.

Fig. 14 Schematic for automatic generation of a graded lattice structure

Fig. 15 Optimization of the Messerschmitt–B€olkow–Blohm beam for minimal compliance:
(a) design domain and boundary conditions, (b) black-and-white solution obtained with origi-
nal PTO [37], and (c) gray solution calculate with the density-continuous PTO
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