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a b s t r a c t 

Composite materials with multiple properties are important for a range of engineering applications. 

Hence, this study focuses on topological design of hierarchical materials with multiple performance in 

both thermal insulation and mechanics. First, a novel multi-objective optimization function is defined 

to find a solution from the Pareto frontier, where the weight coefficients can be adjusted adaptively, to 

keep all the individual objective functions and their sensitivities stabilized at the same level during the 

optimization. Second, a new design strategy is proposed to achieve the hierarchical designs of biphasic 

material microstructures, they are periodically arranged by the porous base materials that are known 

in advance and independent of topology optimization. Third, sensitivity information and algorithm im- 

plementation are given in detail, and the bi-directional evolutionary structural optimization method is 

adopted to iteratively update the micro-structural topologies, by combining with the homogenization 

method. Last, numerical examples are provided to illustrate the benefits of the proposed design method, 

such as high efficiency, implementation easiness, good connectivity and clear interface between adjacent 

phases, etc. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Metamaterials usually possess special properties such as ul- 

ralow mass density, high-strength, lightweight, sound reduction, 

nergy absorbing, vibration isolation, heat and electricity insula- 

ion, etc. [1–6] . Topology optimization has been demonstrated as 

 powerful design tool to obtain advanced structures and material 

icrostructures with various properties and performances [ 7 , 8 ]. In 

he past three decades, many topology optimization methods have 

een developed, typically including the density-based methods [9–

4] and boundary representation methods [15–22] . Among these 

ethods, the bi-directional evolutionary structural optimization 

BESO) [23] conducts topological iterations by gradually adding 

useful materials’ and removing ‘ineffective materials’, in accor- 

ance with the natural law of survival of the fittest. BESO shows 

any advantages such as conceptual simplicity, high efficiency, im- 
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lementation easiness, and convenience for integration with popu- 

ar commercial software. 

Since the pioneer work by Sigmund [24] , many researches em- 

loyed topology optimization methods to design periodic mate- 

ial microstructures with expected and extreme material proper- 

ies. Zhou et.al achieved systematic investigations into the com- 

utational design of biphasic and multi-phase cellular materials 

ith extreme transport properties [ 25 , 26 ]. The parametric level set 

ethod has also been applied to create a range of micro-structured 

etamaterials including auxetic materials [ 27 , 28 ] and multifunc- 

ional metamateials with both negative Poisson’s ratio and nega- 

ive/zero thermal expansion [29] . Isogeometric topology optimiza- 

ion method has also been applied to generate elastic metamate- 

ials [30–32] . BESO method [33–35] has been applied to design 

etamaterials to obtain maximum stiffness, thermal conductiv- 

ty, extremal electromagnetic permeability, and permittivity. Page 

36] investigated the high conductive conduit materials, which are 

istributed within a heat-generating volume. Alberdi and Khandel- 

al [37] carried out bi-material topology optimization by combin- 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.122514
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2021.122514&domain=pdf
mailto:wangyj84@scut.edu.cn
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ng viscoplastic and hyperelastic phases for maximizing energy dis- 

ipation. Hamdia et.al [38] applied deep neural network to model 

he behaviors of two-phase material, and achieved the design 

f flexoelectric nanostructures. Li et al. [ 39 , 40 ] designed cellular 

tructures consisting of multiple patches of material microstruc- 

ures, and mechanical metamaterials with the negative Poisson’s 

atio properties. Topology optimization method has also been ap- 

lied to generate pentamode metamaterials [ 41 , 42 ], which are a 

ew type of three-dimensional solids but able to mimic the fluid 

ehaviors. Zheng et.al obtained many favourable metamaterials 

ith isotropic and auxetic properties, under the framework of evo- 

utionary methods [43–45] . Other types of metamaterials have also 

een designed using topology optimization methods, such as [46–

9] . 

Although many interesting metamaterials and associate com- 

osite structures have recently been obtained by using topology 

ptimization, there is still a strong demand for investigation of 

ore advanced materials and structures. Particularly, the family of 

ultifunctional lattice composite materials and structures plays an 

mportant role for a range of advanced applications [ 50 , 51 ], such

s the aircrafts and biomedical scaffolds. The majority of the cur- 

ent works are focused on the simultaneous designs of materi- 

ls and composites that are hierarchical multiscale structures, such 

s [ 40 , 45 , 52 , 53 ], while few researchers have studied the design of

oth the multifunctional metamaterials and their underlying base 

aterials. Furthermore, the connectivity between different shapes 

f microstructures is difficult to be guaranteed during the opti- 

ization, making them difficult for manufacturing. Most multi- 

unctional designs utilized the direct weighting method and man- 

ally adjusted the weighting coefficients [ 33 , 54 , 55 ], and the design

esults strongly depend on the randomness and experiences of se- 

ecting the weight coefficients, which may make multifunctional 

aterials difficult to obtain in terms of the Pareto solutions, when 

here are property conflicts between different materials. 

To address the abovementioned problems, this study focuses on 

he multifunctional design of material microstructures with two 

hases, such as thermal insulation with bulk modulus, thermal 

nsulation with shear modulus, and thermal insulation with two 

oduli. First, a novel multi-objective function is defined, where the 

eight coefficients can be adjusted adaptively, to keep the sub- 

bjective functions and their sensitivities always stabilize at the 

ame level during the optimization, this will ensure the algorithm 

o find solutions close to the Pareto front. Second, the biphasic hi- 

rarchical materials to be optimized are periodically arranged by 

he selected porous base materials (PBMs), since different PBMs 

xhibit different performances in thermal insulation and mechan- 

cs. Base material library is given in advance, where the topologi- 

al configurations and equivalent properties of all PBMs are known, 

o they are independent of topology optimization. This paper only 

onsiders five types of PBMs but without losing any generality. 

hird, sensitivities of the multi-objective function with respect to 

he design variables are derived, so that the standard optimality 

riteria algorithm can be used. With the BESO [23] and the ho- 

ogenization method [ 56 , 57 ], many favourable hierarchical mate- 

ial microstructures with multiple properties can be obtained. Last, 

umerical examples are provided to demonstrate the advantages of 

he proposed method. 

. Homogenization theory and optimization formulation 

.1. Homogenization theory 

Fig. 1 illustrates the topological design of hierarchical mate- 

ial microstructures, macroscale is not considered but only used 

o explain the design strategy of this study. Composite structure 

n mesoscale is periodically arranged by one or two PBMs, and it 
2 
s to be optimized by adopting the techniques of topology opti- 

ization and homogenization. Base materials are provided in mi- 

roscale, they can be expanded to many enough as design needed, 

nd not limit to those exhibited in Fig. 1 . 

In the framework of density-based methods, the physical prop- 

rty of the discretized element is interpolated by using a power- 

aw scheme, this scheme has been demonstrated not only to en- 

ure the free distribution of multiple materials, but also to produce 

lear topologies [ 58 , 59 ]. The equivalent elastic modulus of the two- 

hase composite materials in mesoscale can be interpolated by 

 ( x a ) = x p a E 

1 + (1 − x p a ) E 

2 (1) 

 a denotes the binary design variable (1 or x min ), where 

 min = 0.001 is utilized to avoid the singularity of elemental stiff- 

ess matrix. E ( x a ) is the elemental property of the two-phase 

omposite materials related to element a . E 

1 and E 

2 are the effec- 

ive properties of the considered base materials, respectively, and 

 

1 > E 

2 . p is the penalty factor and is taken as 3 in this study. For

he design of single-phase hierarchical material, phase 2 is specif- 

cally voids with E 

2 = 0. When the periodic boundary conditions 

re applied, the finite element method can be used to calculate 

he displacement field, and the following elemental stiffness ma- 

rix should be obtained before the finite element analysis: 

 1 = 

N ∑ 

a =1 

K 

a 
1 = 

N ∑ 

a =1 

∫ 
Y 

b 

T 
1 E ( x i ) b 1 dY (2) 

 1 and K a 1 are the global stiffness matrix and elemental stiffness 

atrix in mesoscale, respectively, b 1 is the strain-displacement 

atrix. If periodic unit-cells (PUCs) of the hierarchical materi- 

ls are smaller enough than the geometric size of the considered 

tructure, the homogenization method can give us a way to ap- 

roximately evaluate their properties [56] : 

 

H = 

1 

| Y | 
N ∑ 

a =1 

∫ 
Y 

E ( x a )( ε 0 − ε ) dY (3) 

here E 

H is the homogenized properties of the composite mate- 

ials. Y denotes the area of the 2D unit cell, N is the elemental

umber to be discretized. ε 0 and ε are the unit test strain field 

nd the induced strain field, respectively. In 2D scenario, there are 

hree kinds of initial unit test strains {1, 0, 0} T , {0, 1, 0} T and {0,

, 1} T along the x-, y - and shear-directions, if they are imposed on 

he PUC [57] , we obtain 

 1 u = 

N ∑ 

a =1 

∫ 
Y 

b 

T E ( x a ) dY (4) 

n which the right-hand side signifies the external forces induced 

y the three uniform strain fields, u is the unknown displacement 

eld to be solved. 

Similarly, the thermal conductivity of the a -th element with 

wo phases can be interpolated as 

 ( x a ) = x p a k 

1 + (1 − x p a ) k 

2 (5) 

here k ( x a ) is the interpolated conductivity of the a -th element in

esoscale. k 

1 and k 

2 are the thermal conductivities of the strong 

ase material and weak base material, respectively, and k 

1 > k 

2 . 

ther parameter settings are consistent with those expressed in 

q. (1) . For the design of single-phase hierarchical material, phase 

 is specifically voids with k 

2 = 0. When the periodic boundary 

onditions are applied, the FEM can be used to calculate the tem- 

erature field, and the elemental temperature matrix should be ob- 

ained before the finite element analysis: 

 2 = 

N ∑ 

a =1 

K 

a 
2 = 

N ∑ 

a =1 

∫ 
Y 

b 

T 
2 k ( x a ) b 2 dY (6) 
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Fig. 1. Illustration for the topological design of hierarchical material microstructures. 
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 2 and K a 2 are the global stiffness matrix and elemental stiffness 

atrix in mesoscale, respectively, b 2 is the strain-temperature ma- 

rix. According to the homogenization method, the equivalent ther- 

al conductivity can be evaluated as 

 

H = 

1 

| Y | 
N ∑ 

a =1 

∫ 
Y 

k ( x a ) ( χ0 − χ) dY (7) 

 

H is the homogenized thermal conductivity tensor, χ0 and χ are 

he unit temperature gradient field and the induced temperature 

radient field, respectively. In 2D scenario, there are two uniform 

emperature gradient fields {1, 0} T and {0, 1} T along the x - and y -

irections, if they are imposed on the PUC, we can obtain 

 2 t = 

N ∑ 

a =1 

∫ 
Y 

b 

T 
2 k ( x i ) dY (8) 

n which the right-hand side signifies the external temperatures 

nduced by the two uniform strain fields, t is the unknown tem- 

erature field to be solved. 

.2. Optimization formulation 

This study aims to seek for the hierarchical materials with op- 

imized properties in both the thermal insulation and mechan- 

cs. Based on the BESO method, the corresponding multi-objective 

opology optimization formulation can be defined as 

aximize : g = ω 1 f 1 + ω 2 f 2 
ubject to : K 1 U 

v i = F v i 1 

K 2 T 

v i = F v i 2 
N ∑ 

a =1 

x a V a ≤ V 

∗

x a = x min or 1 

(9) 

here g is the multi-objective performance of the composite ma- 

erials, f 1 and f 2 denote the single performance in mechanics and 

hermal insulation, ω 1 and ω 1 are the weighting coefficients im- 

osed on the two performances in mechanics and thermal insula- 

ion, K 1 and K 2 are the global stiffness matrix and global tempera- 

ure matrix of the design domain, U 

vi and F vi 1 are the global dis-

lacement vector and the external force vector induced by the me- 

hanical test case, T vi and F vi 2 are the global temperature vector 
3 
nd the external force vector induced by the thermal test case, N is 

he total element number, x a is the elemental density with binary 

alue ( x min or 1), x min is a small number used to avoid the compu-

ational singularity of U 

vi and T vi . Also, V a signifies the elemental 

olume, V 

∗ denotes the specified material usages. It is noting that 

he parameters defined above are dimensionless for simplification. 

ext, we propose a novel weighting coefficients adjustment strat- 

gy, which is expressed as 
 

ω 1 = 

1 
f old 
1 

ω 2 = 

1 
f old 
2 

(10) 

f old 
1 

and f old 
2 

are the sub-objective function values in the previ- 

us iteration, respectively. As the numerical algorithm proceeds, 

t is easy to find that weight coefficients will change constantly 

long with the changing of f old 
1 

and f old 
2 

. In this regard, the adjust- 

ent scheme can be deemed as an adaptive one. Additionally, this 

ethod can eliminate the difference in the magnitude order be- 

ween the sub-objective function values, which is very likely to in- 

uce the ill-condition appearance of loads in multi-objective opti- 

ization. By normalizing each sub-objective function value in real 

ime, the Pareto optimal solutions can be obtained easily. It is not- 

ng that weight coefficients are always known during topology op- 

imization, because the sub-objective function values in the previ- 

us iteration have been already calculated. For the first iteration, 

he sub-objective function values of the initial design can be used 

o calculate f old 
1 

and f old 
2 

. 

In 2D scenario, the homogenized elasticity modulus EH ij and 

hermal conductivity tensor kH st of composite materials are ma- 

rices with sizes of 3 × 3 and 2 × 2, respectively. This study mainly 

ocuses on the maximum performances in thermal insulation and 

ulk modulus, thermal insulation and shear modulus, thermal in- 

ulation as well as bulk and shear moduli, the corresponding ob- 

ective functions can be sequentially defined as 
 

 

 

 

 

g 1 = 

E 11 + E 22 + E 12 + E 21 

f old 
1 

+ 

1 
f old 
2 ( k 11 + k 22 ) 

g 2 = 

E 33 

f old 
1 

+ 

1 
f old 
2 ( k 11 + k 22 ) 

g 3 = 

E 11 + E 22 + E 12 + E 21 + E 33 

f old 
1 

+ 

1 
f old 
2 ( k 11 + k 22 ) 

(11) 

here E 11 and E 22 are the elastic coefficients along the x - and y -

irections, respectively. E and E are the elastic coupling coef- 
12 21 
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Fig. 2. Microstructures with different properties but have the same topological configurations and porosities. 
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cients between the x- and y- directions, respectively, E 33 corre- 

ponds to the elastic coefficient along the shear direction, k 11 and 

 22 are heat transfer tensors along the x - and y -directions, respec- 

ively. Usually, the conductivities k 12 and k 21 along the coupling 

irections are much smaller than the values of k 11 and k 22 , so they

re ignored in this study. Reciprocal of the summation of k 11 and 

 22 are used in Eq. (11) , because this study considers the maxi- 

um performance in thermal insulation, rather than the heat con- 

uction. 

. Base material descriptions 

This study evaluates the mesoscopic equivalent properties of 

ve PBMs with arbitrary densities (between 0 and 1) by the ho- 

ogenization method, it is noting that all the considered mi- 

rostructures are generated, meshed and computed in Matlab soft- 

are. As shown in Fig. 2 , since different material properties can 

e induced by the same topological configurations and porosities, 

his study keeps the five micro-configurations unchanged, and try 

o ensure the same structural dimensions in themselves, so as to 

o fair comparisons. Fig. 3 gives the normalized elastic properties 

f the five PBMs, including their tensile coefficients, shear coeffi- 

ients, Poisson’s ratios in the x- and y -directions, and thermal con- 

uctivities in the x- and y -directions. In Fig. 3 , E s , νs , G s and k s 
re the elastic modulus, Poisson’s ratio, shear modulus and thermal 

onductivity of the solid unit-cells, respectively. E 11 and E 22 are the 

lastic coefficients in the x - and y - directions, respectively. G de- 

otes the shear modulus of the porous microstructures. νx and νy 

re the Poisson’s ratios in the x- and y -directions, respectively. k 11 

nd k 22 are the thermal conductivities in the x - and y -directions, 

espectively. 

As illustrated in Fig. 3 , the A1 and A2 configurations show op- 

osite Poisson’s ratios and thermal conductivities in the x- and y- 

irections, but their elastic coupling and shear properties are al- 

ays same for different densities. Curve trends in the A3 configu- 

ation are very close to those in the B configuration, implying that 

he two configurations have the similar performances in mechanics 

nd heat conduction. Curves in the A4 configuration are completely 

ifferent from other four configurations, where the Poisson’s ratio 

oes not change much when the density lies between 0.25 and 

.00. Furthermore, the tensile and shear performances of A4 are 

uite similar when the density ranges from 0 to 1. 

To guide the potential readers, this study constructs fitting 

unctions according to the physical quantities shown in Fig. 3 , so 

s to easily obtain the mesoscopic equivalent properties with con- 

inuous densities between 0 and 1, which are given in Table 1 . 

ased on these fitting functions, the mesoscopic effective proper- 

ies related to a prescribed density can be directly obtained with- 

ut re-applying the homogenization method. In addition, the least- 

quares method in mathematics is utilized to evaluate how well 

he constructed functions fit the real situations. The fitness value 

 

2 = 1 indicates that the given function perfectly fits the samples, 

hereas R 2 = 0 means that these given functions do not fit the 

amples at all. It is noting that 20 uniform density samples be- 
4 
ween 0.05 and 1 are selected to fit each function. As listed in 

able 1 , most fitting functions can achieve an accuracy of more 

han 99% by the polynomials with different orders, except for the 

oisson’s ratio function of 97.14% in A4 configuration, due to its 

oor continuity in Fig. 3 . These R 2 values illustrate that these fit- 

ing functions are very close to the real situations. 

Particularly, Table 2 lists five microstructures to constitute the 

omposite materials with the same porosity to make fair compar- 

sons, including the periodic unit-cells (PUCs), 3 × 3 periodic ar- 

angements, effective elasticity matrixes and thermal conductivity 

atrixes. Table 3 lists their mechanical moduli and thermal con- 

uctivities of these five configurations. All the numerical results 

isted in Tables 2 and 3 are calculated based on the unit elastic 

odulus and unit thermal conductivity, and the Poisson’s ratios in 

ll PBMs are equal to 0.3. 

As shown in Tables 2 and 3 , although the topological configu- 

ations of five microstructures are symmetrical in both the x - and 

 -directions, they exhibit completely different performances in me- 

hanics and thermal insulation. A1 configuration distributes more 

aterials in x -direction than the ones in y -direction, while A2 con- 

guration is the opposite. A3 ∼A5 configurations allocate the same 

mount of material usages in both the x- and the y -directions. 

ence, A1 and A2 configurations are anisotropic in both the me- 

hanics and heat transport, A3 ∼A5 configurations are orthotropic 

n mechanics but isotropic in heat transport. Although A1 and 

2 materials with large thermal anisotropies can be widely used 

o guide the heat flow in a specific direction [60] , their thermal 

omogeneities are usually very poor. Therefore, designers should 

hoose the required material microstructures according to their ac- 

ual applications such as heat guide, thermal insulation, and ther- 

oelectrics, etc. 

A1 and A2 configurations have the best tensile resistances and 

hermal conduction tensors in x - and y -directions, respectively. 

n addition, they possess the worst shear moduli, the middle 

ulk moduli and conductivities. A3 ∼A5 configurations have the 

ame mechanical and thermal performances in both the x - and y - 

irections, the coupling tensors are equal to each other in xy - and 

x -directions. A3 has the middle shear modulus, whereas its bulk 

odulus and conductivity are the best. A4 has the best shear mod- 

lus, the worst bulk modulus and conductivity. A5 has the middle 

ulk modulus, middle shear modulus and conductivity. It is inter- 

sting to find that the strength order in thermal conductivities are 

onsistent with their bulk moduli, but has nothing to do with the 

hear moduli. 

. Sensitivity analysis and algorithm implementation 

.1. Sensitivity analysis 

Topology optimization is a numerical solution technique, so 

ensitivity information related to objective function should be ob- 

ained to iteratively perform the calculation. For the design of 

ingle-phase porous material, the derivative of each homogenized 

echanical and thermal tensor related to design variable x a should 
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Fig. 3. Normalized effective elasticity matrix and thermal conductivity matrix of the considered microstructures. (a) A1 configuration; (b) A2 configuration; (c) A3 configu- 

ration; (d) A4 configuration; (e) A5 configuration. 
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Table 1 

Fitting functions for the mesoscopic equivalent properties versus the PUC densities. 

PUC Normalized property Fitting function Fitness ( R 2 ) 

A1 E 11 / E s –0.8046 ×5 + 2.172 ×4 – 1.581 ×3 + 0.7454 ×2 + 0.4644 x + 0.0032 99.99% 

E 22 / E s 20.2 ×5 – 46.57 ×4 + 38.83 ×3 – 13.8 ×2 + 2.385 x – 0.0837 99.09% 

v x / v s 16.82 ×5 – 39.4 ×4 + 33.24 ×3 – 11.85 ×2 + 2.23 x – 0.0723 99.36% 

v y / v s –5.376 ×5 + 11.7 ×4 – 8.902 ×3 + 3.283 ×2 + 0.2841 x + 0.0182 99.99% 

G / G s 13.28 ×5 – 28.37 ×4 + 23.01 ×3 – 8.035 ×2 + 1.147 x – 0.0471 99.77% 

k 11 / k s –1.567 ×5 + 3.449 ×4 – 2.474 ×3 + 1.118 ×2 + 0.4701 x + 0.0053 99.99% 

k 22 / k s 13.18 ×5 – 30.17 ×4 + 25.16 ×3 – 8.843 ×2 + 1.708 x – 0.0542 99.68% 

A2 E 11 / E s 20.2 ×5 – 46.57 ×4 + 38.83 ×3 – 13.8 ×2 + 2.385 x – 0.0837 99.09% 

E 22 / E s –0.8046 ×5 + 2.172 ×4 – 1.581 ×3 + 0.7454 ×2 + 0.4644 x + 0.0032 99.99% 

v x / v s –5.376 ×5 + 11.7 ×4 – 8.902 ×3 + 3.283 ×2 + 0.2841 x + 0.0182 99.99% 

v y / v s 16.82 ×5 – 39.4 ×4 + 33.24 ×3 – 11.85 ×2 + 2.23 x – 0.0723 99.36% 

G / G s 13.28 ×5 – 28.37 ×4 + 23.01 ×3 – 8.035 ×2 + 1.147 x – 0.0471 99.77% 

k 11 / k s 13.18 ×5 – 30.17 ×4 + 25.16 ×3 – 8.843 ×2 + 1.708 x – 0.0542 99.68% 

k 22 / k s –1.567 ×5 + 3.449 ×4 – 2.474 ×3 + 1.118 ×2 + 0.4701 x + 0.0053 99.99% 

A3 E 11 / E s , E 22 / E s 1.309 ×3 – 1.171 ×2 + 0.8743 x – 0.0326 99.88% 

v x / v s , v y / v s 0.2279 ×3 + 0.2348 ×2 + 0.5447 x + 0.0066 99.97% 

G / G s 3.189 ×3 – 3.016 ×2 + 0.881 x – 0.0645 99.83% 

k 11 / k s , k 22 / k s 0.6926 ×3 – 0.3423 ×2 + 0.6565 x – 0.0115 99.99% 

A4 E 11 / E s , E 22 / E s 13.56 ×6 – 35.54 ×5 + 36.35 ×4 – 17.69 ×3 + 4.379 ×2 – 0.0794 x + 0.0144 99.99% 

v x / v s , v y / v s –16.26 ×6 + 66.21 ×5 – 103.4 ×4 + 78.49 ×3 – 30.53 ×2 + 5.999 x + 0.4755 97.14% 

G / G s 3.266 ×6 – 7.895 ×5 + 8.049 ×4 – 3.466 ×3 + 0.8275 ×2 + 0.2196 x – 0.0012 99.99% 

k 11 / k s , k 22 / k s 2.49 ×6 – 5.786 ×5 + 5.542 ×4 – 2.428 ×3 + 0.7349 ×2 + 0.4452 x – 0.0017 99.99% 

A5 E 11 / E s , E 22 / E s 1.332 ×3 – 1.193 ×2 + 0.8695 x – 0.0299 99.88% 

v x / v s , v y / v s 0.1888 ×3 + 0.2956 ×2 + 0.5257 x + 0.008 99.95% 

G / G s 2.785 ×3 – 2.41 ×2 + 0.6599 x – 0.0435 99.90% 

k 11 / k s , k 22 / k s 0.7015 ×3 – 0.3472 ×2 + 0.6512 x – 0.0102 99.99% 

Table 2 

Five microstructures considered in this study. 

Type Porosity PUC 3 × 3 periodic arrangements Effective elasticity matrix Thermal conductivity matrix 

A1 0.76 [ 

0 . 6738 0 . 1015 0 

0 . 1015 0 . 4457 0 

0 0 0 . 0749 

] [ 
0 . 6749 0 

0 0 . 4661 
] 

A2 0.76 [ 

0 . 4457 0 . 1015 0 

0 . 1015 0 . 6738 0 

0 0 0 . 0749 

] [ 
0 . 4661 0 

0 0 . 6749 
] 

A3 0.76 [ 

0 . 5811 0 . 1145 0 

0 . 1145 0 . 5811 0 

0 0 0 . 0969 

] [ 
0 . 5946 0 

0 0 . 5946 
] 

A4 0.76 [ 

0 . 4921 0 . 1505 0 

0 . 1505 0 . 4921 0 

0 0 0 . 1670 

] [ 
0 . 5602 0 

0 0 . 5602 
] 

A5 0.76 [ 

0 . 5759 0 . 1144 0 

0 . 1144 0 . 5759 0 

0 0 0 . 1081 

] [ 
0 . 5928 0 

0 0 . 5928 
] 

6 
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Table 3 

Equivalent elasticity moduli and thermal conductivities of A1 ∼A5 config- 

urations. 

Type A1 A2 A3 A4 A5 

Bulk modulus 1.3225 1.3225 1.3912 1.2852 1.3806 

Shear modulus 0.0749 0.0749 0.0969 0.1670 0.1081 

Conductivities 1.1410 1.1410 1.1892 1.1204 1.1856 
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e expressed as [33] 

 

∂E H 
i j 

∂ x a 
= 

px p−1 
a | Y | 

∫ 
Y ( ε 0 − ε ) 

T 
E 0 ( ε 0 − ε ) dY 

∂k H st 

∂ x a 
= 

px p−1 
a | Y | 

∫ 
Y ( χ0 − χ) 

T 
k 0 ( χ0 − χ) dY 

(12) 

here EH ij and kH st denote an arbitrary tensor component in 

he mechanical and thermal property matrices, respectively, p is 

he penalty factor and equal to 3 in this study, x a is the elemental

ensity related to element a , ε 0 and ε are the unit test strain field 

nd the induced strain field, respectively. χ0 and χ are the unit 

emperature gradient field and the induced temperature gradient 

eld, respectively. E 0 and k 0 are the mechanical and heat transport 

roperties of base material, respectively. If the cellular materials 

re biphasic, the derivative of the homogenized tensor with respect 

o design variable can be calculated by [ 59 , 61 ] 

 

∂E H 
i j 

∂ x a 
= 

px p−1 
a | Y | 

∫ 
Y ( ε 0 − ε ) 

T 
(
E 1 

i j 
− E 2 

i j 

)
( ε 0 − ε ) dY 

∂k H st 

∂ x a 
= 

px p−1 
a | Y | 

∫ 
Y ( χ0 − χ) 

T 
(
k 1 st − k 2 st 

)
( χ0 − χ) dY 

(13) 

here E 1 ij and E 2 ij are the equivalent elasticity moduli of strong

aterial and weak material, respectively. k 1 st and k 2 st are the 

hermal conductivity moduli of strong material and weak material, 

espectively. This study considers three kinds of multi-objective 

erformances including thermal insulation with bulk modulus, 

hermal insulation with shear modulus and thermal insulation 

ith bulk and shear moduli, their respective sensitivity informa- 

ion can be mathematically derived as 
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(
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f old 
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2 ∑ 
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∂E H 
i j 

∂ x a 
−

∂k H 
11 

∂ x a 
+ ∂k H 

22 
∂ x a 

f old 
2 ( k 11 + k 22 ) 
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)
∂ g 2 
∂ x a 

= px p−1 
a 

(
1 

f old 
1 

∂E H 33 

∂ x a 
−

∂k H 
11 

∂ x a 
+ ∂k H 

22 
∂ x a 

f old 
2 ( k 11 + k 22 ) 

2 

)
∂ g 3 
∂ x a 

= px p−1 
a 

(
1 

f old 
1 

(
2 ∑ 

i, j=1 

∂E H 
i j 

∂ x a 
+ 

∂E H 33 

∂ x a 

)
−

∂k H 
11 

∂ x a 
+ ∂k H 

22 
∂ x a 

f old 
2 ( k 11 + k 22 ) 

2 

) (14) 

here f old 
1 

and f old 
2 

are the sub-objective function values in the 

revious iteration, and they are known in the sensitivity analysis 

f this iteration. 

To avoid the common numerical issues including checkerboard 

orm and mesh-dependency, some necessary strategies should be 

pplied during optimization. As a heuristic method, sensitivity fil- 

ering has been demonstrated as a simple but efficient way to sta- 

ilize the topology optimization algorithm, which is originally used 

n image processing [ 44 , 62 ]. It can eliminate the small structural 

eatures below a prescribed size in the topologies, such as: 

a = 

N ∑ 

a =1 

ω ( r ab ) αb 

N ∑ 

a =1 

ω ( r ab ) 

(15) 

a is the filtered sensitivity related to element a, αb is the sensi- 

ivity information related to element b , whose position is close to 

lement a, N is the total element number discretized in the design 

omain, a and b indicate the a- th and b- th element, respectively, 

 is the central distance between element a and b , ω( r ) is the
ab ab 

7 
eighting factor related to r ab , which can be further defined as 

 ab = 

{
r min − r ab , i f r ab < r min 

0 , i f r ab ≥ r min 
(16) 

here r min is the specified filter radius, big filter radius means 

ore structural details will be filtered, and vice versa. In evolu- 

ionary optimization algorithm, according to the calculation expe- 

iences [57] , r min should be selected as 4–6 times of the size of one

lement to obtain favorable designs. 

Although sensitivity filtering is used, the structural evolution 

ay still be unstable and the structural topology may not converge 

ery well. This phenomenon attributes to the inaccurate estima- 

ion of sensitivity numbers, especially for the boundary elements 

hich are originally not involved in finite element analysis. In this 

espect, Huang and Xie proposed an averaging operation as follows 

23] : 

¯ a = η1 α
k 
a + η2 α

k −1 
a (17) 

here ᾱa is the averaged sensitivity related to element a , αk 
a and 

k −1 
a are the filtered sensitivities related to element a in the k -th 

nd ( k- 1)-th iteration, η1 and η2 are the weight coefficients ap- 

lied to αk 
a and αk −1 

a , and the two are respectively taken as 0.3 

nd 0.7 in this study. It is easy to find that we focus more on the

ensitivity information in the previous iteration, to further stabi- 

ize the multi-objective algorithm. Furthermore, negative sensitiv- 

ties may occur in Eq. (14) , which will make the optimality crite- 

ia method fail to work in topology optimization. Since topologi- 

al evolution in the BESO method is individually depended on the 

equence of the elemental sensitivities, and regardless of their nu- 

erical values. Hence, all sensitivities can be added with a same 

ositive number to prevent the occurrence of negative values, at 

he same time, their sequences can be well maintained. 

	 

a = ᾱa + 

∣∣ᾱmin 
c 

∣∣ (18) 

	 

a is the final sensitivity information with respect to element a , 

hich will be used to determine the elemental addition and dele- 

ion during evolution, ᾱa is the averaged sensitivity related to el- 

ment a , ᾱmin 
c is the minimum negative sensitivity related to ele- 

ent c . All sensitivities will be non-negative through the operation 

n Eq. (18) . 

.2. Algorithm implementation 

The algorithm flowchart of the evolutionary algorithm for the 

esign of hierarchical material microstructures is shown in Fig. 4 , 

here the red dotted box represents the topology optimization 

oop. A complete optimization loop includes matrices assembly in 

echanics and heat transport, FEA at two performances, sensitiv- 

ty calculation, filtering, averaging and modification, variables up- 

ating, etc. The blue dotted box produce the porous base materi- 

ls, which includes the base material library creating, evaluate the 

roperties of all base materials, determination of property fitting 

unctions and select the candidate base materials as design needed. 

his process is independent of topology optimization, so the pro- 

osed algorithm is more efficient to obtain hierarchical material 

icrostructures than the two-scale design methods. 

In evolutionary method, the target volume for the next iteration 

hould be given to determinate the amount of material removal, 

hich can be expressed as 

 k +1 = 

{
V k ( 1 − er ) , i f V k +1 > V 

∗

V 

∗, i f V k +1 ≤ V 

∗ (19) 

here V k denotes the structural volume of the current iteration, 

 k + 1 is the target volume of the next iteration, er is the evolution- 

ry ratio, V 

∗ refers to the specified material usage. If V 

∗ is obtained, 



Y. Zheng, Z. Fu, Y. Wang et al. International Journal of Heat and Mass Transfer 186 (2022) 122514 

Fig. 4. Algorithm flowchart for the design of hierarchical materials. 

s

e

e

w

t  

i

o

a

c

5

e

f

p

s

t

m

t

i

p

h

f

t

t

p

i  

Fig. 5. Initial design. 
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atisfactory convergence accuracy should be given to terminate the 

volutionary algorithm, such as 

rror = 

∣∣∣∣∣∣∣∣
M ∑ 

i =1 

( g k −i +1 − g k −M−i +1 ) 

M ∑ 

i =1 

g k −i +1 

∣∣∣∣∣∣∣∣
≤ τ (20) 

here k is the current iteration number, g k-i + 1 and g k −M-i + 1 are 

he objective function values in the ( k - i + 1)-th and ( k - M - i + 1)-th

terations, respectively. M = 5 signifies that evolutionary algorithm 

btains the final design after at least 10 consecutive iterations, so 

s to ensure favorable solutions. τ is the specified convergence ac- 

uracy, this study takes it as 0.001. 

. Numerical examples 

Using the PBMs provided in Table 2 , this section shows four 

xamples to obtain hierarchical material microstructures with dif- 

erent properties. The first one focuses on the design of single- 

erformance composite materials, to maximize the bulk modulus, 

hear modulus and thermal insulation, the last three aim to ob- 

ain multifunctional performances in both the mechanics and ther- 

al insulation. All numerical examples start from the same ini- 

ial structure, as depicted in Fig. 5 . A rectangular hole is inserted 

nto the center of the design domain to simulate the optimization 

rogress, due to the periodic boundary conditions imposed in the 

omogenization method. Although evolutionary algorithm can per- 

orm the elemental addition and deletion simultaneously, it is best 

o start with a near-full design to ensure all elements have chances 

o appear in each iteration. The discretized elements in all exam- 

les are 100 × 100, filter radius is set to 5 and evolutionary ratio 

s taken as 0.02. Table 4 lists eight cases to be analyzed, M1 and
8 
2 indicate the strong material and weak material, which are rep- 

esented by the blue color and green color, respectively. In the fol- 

owing numerical examples, all the homogenized tensors related to 

trong material M1 should be bigger enough than the weak mate- 

ial M2, so as to ensure stable optimizations, because M1 and M2 

ay possess multiple moduli due to their non-isotropic properties 

n both the mechanics and thermal insulation. 

In case 1 ∼4, M2 is the same one, whereas case 5 ∼8 adopt the

ame M1. Additionally, all the numerical results are dimensionless 

or simplification. Moreover, MH is an indicator defined to express 

he compound performance of the obtained material microstruc- 

ure, the bigger MH value the better compound performance, and 

ice versa. MH is calculated by Eq. (11) when both the weight co- 

fficients are equal to 1. It should be noted that conductivities de- 

ned in the following tables refers to the summation of the ther- 

al conductivities in both the x - and y -directions. 
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Table 4 

Analysis cases. 

Materials Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 

M1 A1 A2 A3 A4 A5 A5 A5 A5 

M2 A5 A5 A5 A5 A1 A2 A3 A4 

Table 5 

Bulk modulus maximization. 

Type Case 1 Case 2 Case 3 Case 4 

PUC 

3 × 3 periodic arrangements 

Equivalent elasticity matrix [ 

1 . 2875 0 . 1715 0 

0 . 1715 0 . 8046 0 

0 0 0 . 1459 

] [ 

0 . 8046 0 . 1715 0 

0 . 1715 1 . 2875 0 

0 0 0 . 1459 

] [ 

1 . 0184 0 . 1833 0 

0 . 1833 1 . 0184 0 

0 0 0 . 1631 

] [ 

0 . 9033 0 . 2401 0 

0 . 2401 0 . 9033 0 

0 0 0 . 2397 

] 

Bulk modulus 2.4351 2.4351 2.4035 2.2868 

Table 6 

Shear modulus maximization. 

Type Case 1 Case 2 Case 3 Case 4 

PUC 

3 × 3 periodic arrangements 

Equivalent elasticity matrix [ 

0 . 9736 0 . 1959 0 

0 . 1959 0 . 8397 0 

0 0 0 . 1610 

] [ 

0 . 8397 0 . 1959 0 

0 . 1959 0 . 9736 0 

0 0 0 . 1610 

] [ 

0 . 9293 0 . 2173 0 

0 . 2173 0 . 9293 0 

0 0 0 . 1898 

] [ 

0 . 8960 0 . 2488 0 

0 . 2488 0 . 8960 0 

0 0 0 . 2662 

] 

Shear modulus 0.1610 0.1610 0.1898 0.2662 

5

r

m

m

s

0

m

a

a

l

o

p

i

c

b

t  

d

s

t

.1. Design for single performance 

This example aims to obtain some single-performance mate- 

ial microstructures, including the design of bulk modulus, shear 

odulus and thermal insulation. Both the elastic moduli and ther- 

al conductivities in PBMs are set to 3 and 1, respectively. The 

pecified material usages for M1 and M2 are the same value of 

.5, cases 1 ∼4 listed in Table 2 are analyzed to compare the 

icro-structural performances. Tables 5–7 list all the topological 

nd numerical results pertaining to bulk modulus, shear modulus 

nd thermal insulation, respectively. Specifically, insulation values 
9 
isted in Table 7 are calculated by the reciprocal of the summation 

f k 11 and k 22 . 

As listed in Table 5 , the analyzed four cases exhibit com- 

letely different topologies, indicating different tensile resistances 

n A1 ∼A4 microstructures. Case 1 and case 2 show the bar-shaped 

onfigurations in the x - or y -directions, and they have the best 

ulk moduli among the four cases, which possess a little advan- 

age over case 3. The final topology in case 3 is similar to the solid

esign, but case 4 is similar to the traditional shear modulus de- 

ign, because the shear modulus in A4 microstructure is far better 

han its bulk modulus. Furthermore, case 3 and case 4 exhibit the 
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Table 7 

Thermal insulation optimization. 

Type Case 1 Case 2 Case 3 Case 4 

PUC 

3 × 3 periodic arrangements 

Thermal conductivity matrix [ 
3 . 5145 0 

0 2 . 3941 
] [ 

2 . 3941 0 

0 3 . 5145 
] [ 

3 . 0254 0 

0 3 . 0254 
] [ 

2 . 8517 0 

0 2 . 8517 
] 

Insulation 0.1692 0.1692 0.1653 0.1753 
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ame tensile resistances in both the x - or y -directions, respectively. 

ase 4 has the worst bulk modulus of 2.2868. 

As listed in Table 6 , four topologies converge to the octagon- 

haped configurations, and there are same amount of material dis- 

ributions in the x - and y -directions. Case 1 and case 2 have the

ame topologies, the topological configurations in case 3 and case 

 are also the same, which explains that the topological design in 

hear modulus is not easily affected by the constituted PBMs. Case 

 has a far-leading shear moduli of 0.2662 when compared to oth- 

rs, and the shear moduli in case 1 and case 2 are the worst ones

f 0.1610. 

As listed in Table 7 , different cases converge to the same 

opologies, because they have the same amount of connected do- 

ains when small holes are ignored. M2 distributes in the four 

orners of the design domain to separate two PBMs strictly, even 

hough M1 in all cases are well connected, the reason for this 

henomenon is that M2 has smaller conductivity than M1. Case 1 

istributes more materials in the x -direction, whereas cases 2 ap- 

ears more materials in the y -direction. Cases 3 and case 4 have 

he same amount of material distributions in both the x - and y - 

irections, respectively. Case 4 has the best insulation performance, 

nd case 3 is the worst one to insulate the heat conduction. 

.2. Thermal insulation and bulk modulus optimization 

This example aims to obtain multifunctional materials with fa- 

orable tensile resistance and thermal insulation, eight cases listed 

n Table 4 are used to illustrate the composite properties of mate- 

ial microstructures. For all cases, the elastic moduli of two PBMs 

o make up M1 and M2 are equal to 10 and 1, respectively, the 

hermal conductivity settings for both base materials are also the 

ame. In this regard, M1 has the better mechanics but worse in- 

ulation performances simultaneously, whereas M2 possesses the 

pposite performances, this example illustrates how the conflict 

opologies will be. Table 8 lists the PUCs, 3 × 3 periodic arrange- 

ents and all the numerical results under soft A5, Table 9 lists all 

he topological and numerical results under hard A5, Fig 0.6 de- 

icts the evolutionary histories related to case 1 and case 5. 

As listed in Table 8 , case 1 and case 2 show the dumbbell-

haped topological configurations in x - or y -directions, respectively. 

ase 3 and case 4 exhibit the similar fan-shaped configurations. All 

he equivalent elasticity matrixes are orthotropic, thermal conduc- 

ivity matrixes in the previous two cases are anisotropic, and the 
10 
atter two are isotropic. Although case 1 and case 2 possess the 

inimum thermal conductivities corresponding to the best insula- 

ion performance, their bulk moduli and MHs are the worst ones 

mong the four cases. Case 3 has the worst insulation performance, 

ts bulk modulus and MH are the middle ones. Case 4 possesses 

he best bulk modulus and middle conductivity, and its MH value 

s the highest one, signifying that case 4 performs the best com- 

ound performances. The strength order of the composite perfor- 

ances in thermal insulation and bulk modulus, is consistent with 

he sequence of their bulk moduli, and has nothing to do with the 

hermal conductivities. 

As listed in Table 9 , case 5 and case 6 show the dumbbell-

haped topological configurations in y - or x -directions, respectively, 

oth of them are opposite to those obtained in case 1 and case 2, 

hich means that the interchange of M1 and M2 has a great im- 

act on the design of composite material microstructures. Case 7 

nd case 8 exhibit the fan-shaped configurations at the same time, 

hich are consistent with case 3 and case 4, this situation tells us 

hat if the considered microstructures are symmetrical along the 

5 ° diagonal, the obtained topologies are most likely the same, 

n spite of their numerical results are different. Four equivalent 

lasticity matrixes are orthotropic, thermal conductivity matrixes 

re anisotropic in case 5 and case 6, and isotropic in case 7 and 

ase 8. The previous two cases possess the best insulation perfor- 

ance due to the minimum conductivities, but their bulk moduli 

nd MHs are the lowest one. Case 7 has the best bulk modulus 

nd MH value, its conductivity is 6.1626, which has a little advan- 

age over that of case 8. The bulk modulus and conductivity in case 

 are the middle ones, leading to the middle MH value of 4.3348. 

he strength order of the four compound performances also cor- 

esponds to the sequence of their bulk moduli and conductivities. 

n addition, it is interesting to find that case 4 related to A4 mi- 

rostructure performs the best MH value among cases 1 ∼4. How- 

ver, case 7 related to A3 microstructure performs the best MH 

alue among cases 5 ∼8. These facts show that experiences from 

ingle-phase designs are not effective for the biphasic designs. 

As depicted in Fig. 6 , the curves related to objective function, 

ub-objective function and volume fraction of case 1 and case 5 

re stable enough, demonstrating that the evolutionary method 

as powerful ability to obtain the hierarchical material microstruc- 

ures. The two curves of objective functions are basically equal to 

 during optimization, and the sub-objective functions always ap- 

roach to 1, and they have no obvious shocks, which can be further 
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Table 8 

Optimized thermal insulation and bulk modulus for soft A5. 

Type Case 1 Case 2 Case 3 Case 4 

PUC 

3 × 3 periodic arrangements 

Equivalent elasticity matrix [ 

2 . 1901 0 . 2392 0 

0 . 2392 1 . 2443 0 

0 0 0 . 2271 

] [ 

1 . 2443 0 . 2392 0 

0 . 2392 2 . 1901 0 

0 0 0 . 2271 

] [ 

1 . 5514 0 . 5510 0 

0 . 5510 1 . 5514 0 

0 0 0 . 4495 

] [ 

1 . 6031 0 . 6567 0 

0 . 6567 1 . 6031 0 

0 0 0 . 6489 

] 

Thermal conductivity matrix [ 
3 . 4725 0 

0 2 . 1879 
] [ 

2 . 1879 0 

0 3 . 4725 
] [ 

3 . 0907 0 

0 3 . 0907 
] [ 

2 . 9193 0 

0 2 . 9193 
] 

Bulk modulus 3.9128 3.9128 4.2048 4.5192 

Conductivities 5.6604 5.6604 6.1814 5.8386 

MH 4.0895 4.0895 4.3666 4.6905 

Table 9 

Optimized thermal insulation and bulk modulus for hard A5. 

Type Case 5 Case 6 Case 7 Case 8 

PUC 

3 × 3 periodic arrangements 

Equivalent elasticity matrix [ 

1 . 3284 0 . 2257 0 

0 . 2257 2 . 3003 0 

0 0 0 . 1738 

] [ 

2 . 3003 0 . 2257 0 

0 . 2257 1 . 3284 0 

0 0 0 . 1738 

] [ 

1 . 5809 0 . 5699 0 

0 . 5699 1 . 5809 0 

0 0 0 . 4761 

] [ 

1 . 4518 0 . 6340 0 

0 . 6340 1 . 4518 0 

0 0 0 . 5288 

] 

Thermal conductivity matrix [ 
2 . 8566 0 

0 3 . 0932 
] [ 

3 . 0932 0 

0 2 . 8566 
] [ 

3 . 0813 0 

0 3 . 0813 
] [ 

3 . 0630 0 

0 3 . 0630 
] 

Bulk modulus 4.0801 4.0801 4.3015 4.1716 

Conductivities 5.9498 5.9498 6.1626 6.1260 

MH 4.2482 4.2482 4.4638 4.3348 
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emonstrated by the topological evolutions shown in Fig. 6 . Addi- 

ionally, as the removal of inefficient materials, volume fractions 

radually converge to the prescribed value of 0.5 in the 36th it- 

ration, then the evolutionary algorithm needs about 10 iterations 

ore to obtain the satisfactory accuracies. 

.3. Thermal insulation and shear modulus optimization 

This example aims to obtain the composite materials with op- 

imized thermal insulation and shear modulus, eight cases are uti- 

ized to analysis as explained in Sections 5.2 . For all cases, the elas-
11 
ic moduli of two base materials to make up M1 and M2 are set to

 and 1, respectively. The thermal conductivities of two base ma- 

erials are equal to 5 and 1, respectively. Table 10 lists the PUCs, 

 × 3 periodic arrangements and all the numerical results under 

oft A5, Table 11 lists all the topological and numerical results un- 

er hard A5, Fig. 7 shows the evolutionary histories of case 4 and 

ase 8. 

As listed in Table 10 , the topologies in case 1 and case 2 ex-

ibit dumbbell-shaped configurations, little materials appear in the 

enter of the design domain to reduce heat transfer, both of them 

ave more materials distributed in the x - or y -direction, respec- 
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Fig. 6. Evolutionary histories of case 1 and case 5. (a) Soft A5 condition; (b) hard A5 condition. 
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ively, since their respective strong-phase materials A1 and A2 are 

lso like this. Case 3 and case 4 converge to the same fan-shaped 

opologies. All the obtained equivalent elasticity matrixes are or- 

hotropic, but the previous two thermal conductivity matrixes are 

nisotropic, the latter two are isotropic. Case 1 and case 2 pos- 

ess the worst shear moduli and the best insulation performances, 

heir MH values are the middle ones of 0.5013. Case 3 has the mid-

le shear modulus and maximum conductivity, its compound per- 

ormance in shear modulus and thermal insulation is the lowest 
12 
ne. Case 4 has a far-leading shear modulus and middle insula- 

ion value, and performs the best performance. The four compound 

erformances have nothing to do with the magnitude of the shear 

oduli and conductivities. 

As listed in Table 11 , case 5 and case 6 exhibit the opposite 

umbbell-shaped topological configurations in y - and x -directions, 

espectively. This situation illustrates that the interchange of M1 

nd M2 will seriously affect the hierarchical designs in shear mod- 

lus and thermal insulation. Case 7 and case 8 show the same fan- 
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Table 10 

Optimized thermal insulation and shear modulus for soft A5. 

Type Case 1 Case 2 Case 3 Case 4 

PUC 

3 × 3 periodic arrangements 

Equivalent elasticity matrix [ 

1 . 0525 0 . 1716 0 

0 . 1716 0 . 8570 0 

0 0 0 . 1503 

] [ 

0 . 8570 0 . 1716 0 

0 . 1716 1 . 0525 0 

0 0 0 . 1503 

] [ 

0 . 9367 0 . 2086 0 

0 . 2086 0 . 9367 0 

0 0 0 . 1848 

] [ 

0 . 8938 0 . 2395 0 

0 . 2395 0 . 8938 0 

0 0 0 . 2506 

] 

Thermal conductivity matrix [ 
1 . 7602 0 

0 1 . 0884 
] [ 

1 . 0884 0 

0 1 . 7602 
] [ 

1 . 6078 0 

0 1 . 6078 
] [ 

1 . 5245 0 

0 1 . 5245 
] 

Shear modulus 0.1503 0.1503 0.1848 0.2506 

Conductivities 2.8486 2.8486 3.2156 3.0490 

MH 0.5013 0.5013 0.4958 0.5786 

Table 11 

Optimized thermal insulation and shear modulus for hard A5. 

Type Case 5 Case 6 Case 7 Case 8 

PUC 

3 × 3 periodic arrangements 

Equivalent elasticity matrix [ 

1 . 0153 0 . 1707 0 

0 . 1707 0 . 9141 0 

0 0 0 . 1350 

] [ 

0 . 9141 0 . 1707 0 

0 . 1707 1 . 0153 0 

0 0 0 . 1350 

] [ 

0 . 9412 0 . 2116 0 

0 . 2116 0 . 9412 0 

0 0 0 . 1895 

] [ 

0 . 8477 0 . 2558 0 

0 . 2558 0 . 8477 0 

0 0 0 . 2364 

] 

Thermal conductivity matrix [ 
1 . 4327 0 

0 1 . 5696 
] [ 

1 . 5696 0 

0 1 . 4327 
] [ 

1 . 6093 0 

0 1 . 6093 
] [ 

1 . 0429 0 

0 1 . 0429 
] 

Shear modulus 0.1350 0.1350 0.1895 0.2364 

Conductivities 3.0022 3.0022 3.2186 3.1816 

MH 0.4681 0.4681 0.5002 0.5507 
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e

haped configurations except for the differences in the middle of 

he design domain, one is square and the other is round. The previ- 

us two cases possess the worst shear moduli, and the best insula- 

ion performances due to their maximum conductivities. Moreover, 

hey have the lowest MH values of 0.4681. Case 7 has the middle 

hear modulus and the minimum insulation value, its MH value is 

he middle one. Case 8 possesses the best shear modulus and mid- 

le insulation value, leading to the best compound performance. 

As depicted in Fig. 7 , the curves related to objective func- 

ions and sub-objective functions are smooth enough, demonstrat- 

ng that the proposed algorithm possesses good robustness to ob- 
13 
ain hierarchical material microstructures, it is easy to find that the 

volutionary histories in sub-objective function 2 are also stable 

uring the optimization. Volume fractions in the two cases show 

he same changing trends, the evolutionary algorithm starts from 

 near-solid structure and gradually converge to the specified vol- 

me fractions of 0.5 in the 36th iteration. In addition, more than 

0 iterations are needed to obtain the satisfactory accuracies. The 

opological evolutions are similar in different iterations and they 

nally converge to the same configurations, except for the differ- 

nces in the central shapes of the design domain. 
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Fig. 7. Evolutionary histories of case 4 and case 8. (a) Soft A5; (b) hard A5. 
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.4. Thermal insulation as well as bulk and shear moduli 

ptimization 

This example dedicates to obtain hierarchical material mi- 

rostructures with thermal insulation and two moduli, accompa- 

ying by the compound performances in thermal insulation, bulk 

odulus and shear modulus simultaneously. As analyzed in the 
14 
revious Sections, M1 material has the stronger performance in 

oth the mechanics and thermal conductivities. In other words, M1 

ossesses better performance in mechanics but poor performance 

n thermal insulation. This example fixes the equivalent elasticity 

atrixes of M1 and M2 materials, and switches their thermal con- 

uctivities to illustrate how the opposite conductivities will influ- 

nce the topological configurations of hierarchical materials. Here, 
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Table 12 

M1 with strong mechanical performance and strong thermal conductivity. 

Type Case 1 Case 2 Case 3 Case 4 

PUC 

3 × 3 periodic arrangements 

Equivalent elasticity matrix [ 

3 . 6994 0 . 5404 0 

0 . 5404 2 . 5683 0 

0 0 0 . 4663 

] [ 

2 . 5683 0 . 5404 0 

0 . 5404 3 . 6994 0 

0 0 0 . 4663 

] [ 

2 . 9201 0 . 6893 0 

0 . 6893 2 . 9201 0 

0 0 0 . 6025 

] [ 

2 . 8073 0 . 7866 0 

0 . 7866 2 . 8073 0 

0 0 0 . 8343 

] 

Thermal conductivity matrix [ 
4 . 1636 0 

0 2 . 9096 
] [ 

2 . 9096 0 

0 4 . 1636 
] [ 

3 . 7294 0 

0 3 . 7294 
] [ 

3 . 5512 0 

0 3 . 5512 
] 

two moduli 7.8149 7.8149 7.8215 8.0221 

Conductivities 7.0732 7.0732 7.4589 7.1025 

MH 7.9563 7.9563 7.9556 8.1629 

Table 13 

M1 with strong mechanical performance but weak thermal conductivity. 

Type Case 1 Case 2 Case 3 Case 4 

PUC 

3 × 3 periodic arrangements 

Equivalent elasticity matrix [ 

3 . 1064 0 . 5242 0 

0 . 5242 2 . 7628 0 

0 0 0 . 4700 

] [ 

2 . 7628 0 . 5242 0 

0 . 5242 3 . 1064 0 

0 0 0 . 4700 

] [ 

2 . 9314 0 . 5750 0 

0 . 5750 2 . 9314 0 

0 0 0 . 5349 

] [ 

2 . 7603 0 . 6633 0 

0 . 6633 2 . 7603 0 

0 0 0 . 6474 

] 

Thermal conductivity matrix [ 
4 . 9419 0 

0 4 . 4200 
] [ 

4 . 4200 0 

0 4 . 9419 
] [ 

5 . 0190 0 

0 5 . 0190 
] [ 

5 . 0693 0 

0 5 . 0693 
] 

Two moduli 7.3876 7.3876 7.5477 7.4946 

Conductivities 9.3619 9.3619 10.0380 10.1387 

MH 7.4944 7.4944 7.6473 7.5932 

c

5

m  

T

c

l

p

m

3

 

s

c

t

S

f

s

g

t

ase 1 ∼4 are utilized to analysis without consideration of case 

 ∼8. The elastic moduli and thermal conductivities of the two base 

aterials to make up M1 and M2 are set to 10 and 3, respectively.

able 12 lists all the calculation results under M1 with strong me- 

hanical performance and strong thermal conductivity, Table 13 

ists all the calculation results under M1 with strong mechanical 

erformance but weak thermal conductivity. Obviously, the ther- 

al conductivities of the two base materials in Table 12 are 10 and 

, but the two values are opposite in Table 13 . 
15 
As listed in Table 12 , case 1 and case 2 exhibit the dumbbell-

haped configurations in the x - and y -directions, respectively, 

ase 3 and case 4 show the fan-shaped configurations, respec- 

ively. The topological results are similar to the cases analyzed in 

ections 5.2 and 5.3 , which demonstrates that the compound per- 

ormances of hierarchical materials in mechanics and thermal in- 

ulation are roughly the same, because those microstructures with 

ood bulk modulus usually have good shear modulus at the same 

ime, and vice versa. Although case 1 and case 2 have the min- 
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Fig. 8. Evolutionary histories of case 3 under different conductivities in M1. (a) Strong conductivity in M1; (b) weak conductivity in M1. 
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mum moduli and conductivities, their MHs are the middle ones, 

hich has a little advantage over case 3. Case 3 has the best con- 

uctivity and middle moduli, and its MH value is the worst one. 

ase 4 possesses the maximum moduli and middle conductivity, 

t shows the best compound performance. Furthermore, the com- 

ound performances of the obtained hierarchical materials have 
16 
othing to do with the magnitude orders of their respective mod- 

li and conductivities. 

As listed in Table 13 , when the thermal conductivities in M1 

nd M2 are exchanged, case 1 ∼4 show completely different topolo- 

ies when compared to those results listed in Table 12 . M2 mate- 

ial connects well in all cases, but M1 is separated to insulate the 
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eat transmissions due to its lower thermal conductivity. Case 1 

nd case 2 possess the minimum moduli and conductivities, and 

heir MHs are also the smallest ones. Case 3 possesses the maxi- 

um modulus and middle conductivity, it performs the best com- 

osite performance because of the maximum MH. Case 4 has the 

iddle modulus and the worst insulation, and its MH value of 

.5932 is the middle one. Table 13 further demonstrates that the 

ompound performances of hierarchical material microstructures 

re consistent with the magnitude sequence of their mechanical 

oduli in most cases, rather than their conductivities. 

As depicted in Fig. 8 , all curves are extremely smooth. In 

ig. 8 (b), there is a little shock at the 20th iteration, which may 

orrespond to a violent stage of topological evolution. After that, 

he objective function is stable around 2 until the optimization 

nds. The curves related to sub-objective function 1 is smooth 

nough, it is easy to find that sub-objective function 2 should has 

he same oscillation as the total objective function. Volume frac- 

ions gradually converge to the specified value of 0.5, which re- 

ects the unique advantage of evolutionary algorithm. Topological 

volutions are basically stable during the optimization. 

. Conclusions 

This study proposes a new design methodology to create hier- 

rchical material microstructures with two phases, which are com- 

osed of porous base materials. To achieve different multifunc- 

ional designs, such as thermal insulation with bulk modulus, ther- 

al insulation with shear modulus and thermal insulation with 

wo moduli, an adaptive weight coefficient adjusting method is 

resented to approach the Pareto frontiers, regardless of the num- 

er of the individual objective functions. The fast convergence of 

he design (all examples converged within 50 iterations) demon- 

trates the efficiency of the evolutionary method. Hierarchical de- 

ign results for the single performance and multiple performances 

re very different, cases related to A1 and A2 configurations always 

how the same performances, despite the difference of the ob- 

ained topological configurations of material microstructures. Cases 

elated to A3 and A4 configurations exhibit the similar topologies 

ut different properties. The following conclusions can be drawn: 

1) For the design of single performance, case 1 and case 2 related 

to A1 and A2 configurations show the best bulk moduli, case 4 

related to A4 configuration is the worst one, but the magnitude 

order of cases 1 ∼4 in the shear modulus is reversed. Case 4 

has the best performance in thermal insulation, whereas case 3 

related to A3 configuration shows the worst insulation. 

2) For the design of thermal insulation with bulk modulus, cases 

related to A1 and A2 configurations show the worst composite 

performances. Case 4 shows the best compound performance in 

the previous four cases, but case 7 related to A3 configuration 

is the best one among cases 5 ∼8. 

3) For the design of thermal insulation with shear modulus, cases 

related to A4 configuration have the superior compound perfor- 

mances than others. Case 3 shows the worst composite perfor- 

mance in the previous four cases, but case 5 and case 6 related 

to A1 and A2 configurations are the worst ones among cases 

5 ∼8. 

4) For the design of thermal insulation with two moduli, cases re- 

lated to A1 and A2 configurations show the worst compound 

performances. Case 4 shows the best composite performance in 

the previous four cases, but case 3 performs the best when the 

conductivities of the two PBMs are exchanged. 

The above conclusions explain that both the exchanges of two 

BMs and conductivities will impact the design of hierarchical ma- 

erials. The proposed method is featured with high efficiency, eas- 

ness in implementation, good connectivity and clear interface be- 
17 
ween adjacent phases. Although the proposed method is tested on 

he 2D numerical examples, it can be applied to 3D designs with- 

ut any conceptual difficulties. Moreover, our future work will fo- 

us on the experimental verification of the multiple performances 

n both the mechanics and thermal insulation. 
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