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Structures in engineering application may face loads from multiple physical fields. To simultaneously design
macroscopic structures that have lower thermal compliance and higher natural frequency, a new multi-objective
topology optimization filled with multiple microstructures is proposed based on the weight sum method. To
shorten the gap between the optimized results and the design requirement, a self-selected weight sum method
that is based on the fitting functions of the result domains and the bisection method is proposed to get the

optimized macroscopic structures with specific properties directly. Several numerical examples, including single-
phase material and multiple materials cases, are presented to demonstrate the feasibility and practicality of the
proposed method. The results show that the employment of multiple materials optimization provides the
structures with a wider result domain than the single-phase material situations. The self-selected weight sum
method is of high efficiency, good connectivity and easy to implement.

1. Introduction

Topology optimization (TO) is a structural design method aiming at
finding out the optimal material distribution subjected to some con-
strains within a given design domain. Since the pioneering work of
Bendsge and Kikuchi [1], plenty of impressive TO methods have arisen
in the past few decades, such as homogenization method [1], solid
isotropic material with penalization (SIMP) approach [2], evolutionary
structural optimization (ESO) [3], level set method (LSM) [4,5], and
moving morphable component (MMC) method [6,7]. Among above-
mentioned methods, the SIMP method has been widely used due to its
simplicity [8]. Hence, it will be used in this study to establish the multi-
objective optimization model. Additionally, TO has been successfully
applied to various physical fields such as solid mechanics [9], fluid
mechanics [10], heat transfer [11,12], and engineering fields like
aircraft and additive manufacturing [13,14].

The steady-state heat conductive TO can be regarded as an important
application of TO in thermal conductive problem. Plenty of earlier
steady-state heat conductive works focus on the calculation of shape-
based sensitivities, which cover aspects in steady-state and transient
fields with respect to the changes in design parameters [ 15], sensitivities
for heat conducting solids [16], sensitivities for linear [17] and non-
linear [18] thermal systems. Since TO can provide a more flexible
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design comparing with the size or the shape optimization, designers
began to introduce TO into thermal problems [19]. Li et al [20] pre-
sented a procedure for both shape and topology optimizations for heat
conductive problems. Soon after that, Bendsge and Sigmund [21] put
forward a classical work that obtains a ‘tree-like’ structure based on a
two-dimensional (2-D) finite element framework. Gersbory-Hansen
et al. [22] adopted the finite volume method in conjunction with TO
to solve a similar planar heat conduction problem, and a similar
branching characteristic is obtained. Zhuang et al. [23] combined the
level set method with topological derivatives to solve the planar heat
conduction problem. Li et al. [19] adopted evolutionary algorithms in
2D topology design of heat conduction problem, which was extended to
three-dimensional (3-D) design latter [24-26]. The efficiency and ac-
curacy of the steady-state heat conductive TO are gradually attracting
attention nowadays, which are heavily dependent on the initial design,
analysis mesh and filtering methods [27,28]. To get rid of the influence
of analysis mesh, Zhao et al. [29] presented a novel meshless TO method
that based on the meshless generalized finite difference method, and it
has better performance in feasibility and stability. Lohan et al. [30]
proposed a more comprehensive approach by combining steady-state
thermal TO with a generation algorithm, which is independent of the
initial material distribution and mesh, and does not require a filter.
Among the methods above, the classical optimization model proposed
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by Bendsge and Sigmund [21] has been widely used for its simplicity. In
this paper, it will be used to establish the multi-objective optimization
model.

Besides, eigenvalue optimization is also of great importance in many
engineering fields. It is expected to heighten the structural natural fre-
quencies to avoid destructive responses caused by external excitations. It
contains TO problems related to the fundamental frequency, the high-
order frequency, and the frequency gap of a number of the lower fre-
quencies [31]. This paper mainly addresses the TO for maximizing the
first fundamental frequency. Diaz and Kikuchi [32] firstly combined the
TO of the continuum structure with the natural frequency optimization
of structural vibration, where they used the homogenization method to
address the single frequency design of plane disks. Soon after that, Tenek
and Hagiwara [33] proposed an enhanced form of optimization model
based on the homogenization or the SIMP method. Ma et al. [34,35]
defined a different objective function for maximizing the fundamental
frequency, and both the repeated eigenvalue optimization problems and
the frequency response of structural TO problem were discussed in their
studies. Pedersen [36] proposed a TO models using the SIMP approach
for maximizing the first natural frequency, which mainly focused on
removing localized modes in low density areas of the design domain. Du
and Olhoff [37] studied the fundamental frequency, high-order natural
frequency and frequency gap optimization design using the SIMP
method. Achtziger and Kocvara [38] developed a non-heuristic mathe-
matical models using an equivalent reformulation as a bilinear semi-
definite programming problem without the pitfalls of the origin problem
to improve the situation where some design variables were equal to zero.
Liu et al. [31] presented a frequency optimization method based on the
compactly supported radial basis functions parameterized level-set
method, which adopts the fundamental frequency, the frequency of a
given higher-order, and the gap between two consecutive frequencies as
the optimization objectives. More recently, Ferrari et al. [39] proposed
an eigenvalue TO method that surrogated the eigenvalue problem by a
frequency response one, and it got a remarkable improvement in the
calculation cost.

Multi-objective topology optimization is characterized by the ability
to simultaneously design several different properties of the structures. In
a recent work, Pereira et al. [40] presented a method aiming at maxi-
mizing the fundamental model frequency and corresponding specific
damping capacity of tow-steered composite laminates, in which the
theoretical derivation of the multi-objective TO and data analysis of a
series of numerical examples are made clearly. In this paper, the multi-
objective function is defined to obtain macrostructures with lower
thermal compliance and higher natural frequency. However, due to the
performance conflicts between low thermal compliance and high natu-
ral frequency, it can be known that any further improvement in one
objective will result in a clear weakening of the other [41]. Pareto op-
timum is thus defined, where there is no solution that an objective is
optimized without deteriorating the other one. In general, it is hard to
generate a global optimum for all the anticipated objectives. This paper
focuses on the relation between different objective functions. The
weight sum method is used to depict the Pareto optimal set, where
multiple solution points can be obtained by varying the weights
consistently [42]. The interaction between different objectives can be
obtained by analyzing the solution points.

To perform better in both the heat conduction and natural frequency,
the macrostructures can be filled by multiple microstructure. In the
process of multiple material Topology optimization (MMTO), the ma-
terial interpolation scheme is usually needed to obtain the effective
mechanical properties of an element. Bendsge and Sigmund [21] firstly
proposed a modified SIMP method to construct the material interpola-
tion model, which is widely applied in MMTO [43,44]. Following this
work, researchers proposed some other methods like SIMP. Blasques
[45] proposed a SIMP-like material interpolation method in the TO of
laminated composite beam cross sections. Zuo and Saitou [8] presented
an ordered multi-materials SIMP interpolation to solve MMTO problems
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without introducing any new variables. Besides, other researchers tried
to use the other algorithm to deal with the material interpolation
problem. Habibian et al. [46] proposed an approach for solving density-
based MMTO of cracked structures using Peridynamics. Gao et al. [47]
proposed an method for robust MMTO problem of continuum structures
under load uncertainly. Banh et al. [48] came up with a non-
homogeneous MMTO method for functionally graded structures with
cracks, which used the active-phase algorithm to convert a MMTO
problem into many binary phase TO sub-problems. The above three
methods are based on alternating active-phase method, and both of
them effectively solve the problem. Li et al. [49] presented a MMTO
method that assigned the material according to the material utilization
based on the BESO. In terms of the difference of filling materials,
Giraldo-Londono and Paulino [50] proposed a MMTO method filling by
multiple viscoelastic microstructures based on the Discrete Material
Optimization interpolation scheme. Due to the convenience and gener-
ality, the modified SIMP method proposed is used in this paper.

This paper proposes a novel multi-objective TO method, where the
maximization of natural frequency and the minimization of thermal
compliance are considered simultaneously. To enhance the performance
of the structures from the aspect of microstructure, multiple lattice
materials are used to constitute the macrostructure. The lattices selected
have high performance in both the heat conduction and mechanics. The
energy-based homogenization method (EBHM) is used to calculate the
effective property of lattice materials, and the modified SIMP method is
employed as the material interpolation scheme.

Comparing with the previous work, this paper pays more attention in
the result of the multi-objective optimization under different material
proportions. Optimized structures with different properties can be ob-
tained by adjusting the material proportion. Based on this fact, a self-
selected weight sum method is proposed in this paper, which can
approach and obtain the target result point by adjusting the filling
proportion. This method can effectively expand the result domain of
multi-objective topology optimization, and obtain the target result
points directly, which can remarkably shorten the design time.

The remainder of this paper is organized as follows: Section 2 shows
the EBHM and the material interpolation method. The effective elastic
properties of lattices will also be calculated used the EBHM in section 2.
The establishment of the optimization model will be conducted in Sec-
tion 3. The Optimality Criteria (OC) method and the analysis of sensi-
tivity are introduced briefly in Section 4. Section 5 provides several
numerical examples to show the feasibility and the advantage of the
multi-objective TO method. Finally, conclusions are given in Section 6.

2. Theory background
2.1. Homogenization theory

The homogenization theory can be applied to evaluate material
effective properties, when satisfying the following two assumptions: (1)
the dimensional sizes of the periodic unit cells (PUCs) are much smaller
than that of the macrostructures, and (2) PUCs are periodically
distributed in the macrostructure [51,52]. Since it was proposed, ho-
mogenization methods have played a significant role in calculating the
elastic properties of microstructures [53,54] and viscoelastic materials
[50]. Among the existing homogenization methods with different
characteristics, numerical homogenization method [55] and the EBHM
[56] attracted the most attention. The latter one is based on the criterion
of energy conservation with respect to stress and strain. In this paper,
EBHM is adopted to evaluate the macroscopic equivalent properties of
microstructures for convenience.

In this case, the asymptotic expansion theory is used in character-
izing the displacement field inside PUCs [52], which can be expressed
as.

u'(a,b) = ug(a, b) + tuy (a,b) + Puy(a, b) + - (@D)]
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Table 1
Microstructures and their mechanical properties.

Composite Structures 304 (2023) 116322

Microstructure Area Elastic matrix Thermal elastic matrix
0.3 3.1197 0.7046 0.0000 0.1817 0.0000
1.0 x 10° x | 0.7046 3.1197 0.0000 0.0000 0.1817
0.0000 0.0000 0.6132
0.5 [5.6803 1.4037 0.0000] 0.3251 0.0000
1.0x 10% % [1.4037 5.6803 0.0000 0.0000 0.3251
| 0.0000 0.0000 1.2444 |
0.7 [9.2344 2.4706 0.0000] 0.5118 0.0000
1.0x 10°x [ 24706 9.2344 0.0000 0.0000 0.5118
| 0.0000 0.0000 2.4932 |
0.3 [2.7960 0.7777 0.0000] 0.1704 0.0000
1.0x 108 x [0.7777 2.7960 0.0000 ‘[ 0.0000 0.1704 |
| 0.0000 0.0000 0.7109 |
0.5 [5.3898 1.6396 0.0000] 0.3230 0.0000
1.0% 10°x [1.6396 5.3898 0.0000 0.0000 0.3230
| 0.0000 0.0000 1.5501 |
0.7 [8.6149 2.6471 0.0000] 0.4956  0.0000
1.0x 10% % [ 26471 8.6149 0.0000 0.0000 0.4956
[ 0.0000 0.0000 2.7868 |

where the involved functions are dependent on the global macroscopic
variable a and the local microscopic variable b. t =b/a is the scale
factor, it is easy to find that PUCs will approach to be a point when t &
0. When only considering the first order terms of the displacement field
u*(a,b), the homogenized effective elastic tensor EF of the microstruc-
tures can be obtained by the volume integrant in PUCs:

“pg rs r

1 " "
Eu =1y /E (et — D) ()4 — &)y (2)

where |Y| denotes the area in 2D cases and the volume in 3D cases of
PUCs, egéij) corresponds to three linearly independent unit test strain

fields in the 2D scenario, namely (1,0,0)%, (0,1,0)" and (0,0,1)". The
unknown item F;gd) is the Y-periodic solution of the following equilib-

rium equation.

oo ) 0
Ejpget—dy = fE-‘ L _— gy 3
/Y Hpa©rs ay] ¥ ypq©rs ayj ( )
where @ is the admissible displacement field.

If the considered PUC is divided into N, elements, the homogenized

elastic property showed in Eq. (2) can be approximated by:

1 & i (i T .
B = gy 2 2w k) (4)

where u;(ij) is unknown element displacements, and k. is the element
stiffness martrix.
In the EBHM, the unit test strains are imposed directly on the

A(kl)

boundaries of the PUCs. The induced strain field &,; ~ corresponds to the

superimposed strain fields (Egék” 75;,3‘”) in Eq. (2) [56]. In terms of
element mutual energies, (4) is written in a new equivalent form as [57]:

| Ne 1 e T
B = ] 2 Qi =y} 2 ) k) ®)
e=1 e=1

where u?% denotes the corresponding element displacements, and ngi
represents the element mutual energy. The effective elasticity properties
are interpreted as the summation of elastic energies of PUCs [19,57]. In
2D cases, the homogenized elastic tensor E¥ is expanded as:

1111 EﬁZZ E{”I 12
E = Ezyzu E?zzz Efzu (6)

-H H H
EIZII EI222 EIZIZ

EH

The thermal elastic tensor can also be obtained by applying the

method above. The difference in calculating the thermal elastic tensor is
that two unit test temperature gradients will be imposed directly on the
boundaries of the PUCs, which are (1, O)T and (O, I)T, respectively. And
the homogenized thermal elastic tensor EZ ™ can be expanded as:

-H —ther H—ther
H—ther __ Ellll EI122
E e — | )
E ther EH ther
2211 2222

2.2. Calculation of the equivalent elastic properties

Lattice materials are used in this paper, whose properties can be
designed by changing the geometrical configurations. The mechanical
properties of a lattice are mainly dependent on the topology of the unit
cell, whose characteristic length should be at least one order of magni-
tude below that of the component, and should be periodic so that a
lattice can be considered as a material.

Two lattice materials are selected and the EBHM is used to calculate
their mechanical properties. Herein, since lattice materials will be used
for both the natural frequency optimization and thermal conductivity
optimization, the elastic matrix and thermal elastic matrix of lattice
materials should be calculated. Assuming all the PUCs used in this sec-
tion are first order square unit, and the elasticity modulus of the base
material E, is equal to 2 x 107 Pa, which can reduce the size difference
between the values of the objective functions, while the heat conductive
capacity Ef of the base material and the Poisson ratio nu are equal to 1
W/(m*K) and 0.3, respectively. Applying the above parameters to the
EBHM, elastic matrix and thermal elastic matrix can be obtained. The
lay-out and mechanical properties can be seen in Table 1.

For convenience, the first and second microstructures are named as
material a and material § respectively.

2.3. Material interpolation scheme

In this paper, multiple microstructures are used to fill the macro-
scopic structure. The material interpolation scheme is required to figure
out the effective mechanical properties.

The SIMP formulation is applied here, which was first extended to
the multiple materials case by Bendsge and Sigmund [58]. According to
the SIMP interpolation model, the effective mechanical properties of a
single element with three phases (including two kinds of solid materials
and one void material) of materials can be expressed as:

Exys) = () { 0) B+ [1 = 00)' ] } (®)

where E(l) and E% indicate the elastic modulus of material-1 and material-
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Table 2
Situation of different materials distribution.

Situation Number X i Material contains
1 0 0 No material

2 1 0 Full of material 1
3 1 1 Full of material 2
4 1 (0,1) Material 1 and 2

2 respectively. When the element contains solid materials (x; is higher
than 0), ¥; Tepresents the contribution of solid material-1 and solid
material-2 to the effective elastic modulus of element e. Besides, P is the
penalization exponent that can help promote convergence to a discrete
solution by lowering the local stiffness of the element with intermediate
density. To better illustrate material contribution in the element when
the variables x; and y; change, Table 2 is proposed here.

3. Problem statement

This section establishes a multi-objective optimization model, which
involves two performances in both the heat conduction and natural
frequency. The weighted-sum method is used to formulate the multi-
objective optimization model as:

Find @ x=[x;,x0,%3, ..., %,],

y= L\’l-YL)’B:----)’n}

Minimize : F = (1 —y)C — ww,*
Subject to : K'T =f,
K — w’M]u; =0,
Vimax — Z Vix; = 0, (9
i=1

vymax - 2": V.‘)’x = 0:
i=1

0 < xpmin < X5 < Xpax < 1,
0 < Ymin < ¥i < Ymar < 1,
0<y<1

where f is the thermal load vector, T is the temperature vector, K" is the
thermal conductivity in at the macro level, K is the stiffness matrix of
elastic problem, M is the global mass matrix, @, is the first natural fre-
quency of vibrating continuum structures, respectively. Besides, Vyyax
and V., are the prescribed structural volume of variables x and y
respectively, V; is the volume of the i-th element. x; is the density of the i-
th element, y; represents the contribution of different materials, n is the
total number of elements. Xp, and y,,;, is the lower limit of x; and y;,
while Xmax and y,.. is the upper limit of x; and y;. To avoid the
computational singularities, xp;, is equal to 0.001. Since the multi-
objective function defined in Eq. (9) only focuses on two properties of
the continuum structures, a simple weighted-sum method has been
applied, where y is the weight coefficient. The thermal compliance C
can be expressed as

N
C=T'K'T =) TIKT. (10)

where T, and K," are the temperature vector and the elemental heat
conductivity matrix respectively. In the same way, @?(x) is the objective
of natural frequency optimization problem, which is the square of the
first natural frequency, and it can be expressed as

.
, u'Ku
W] = —— 11
' u"Mu
where u is the eigenvector corresponding to @;.
The global mass matrix M is assembled by the element mass matrix
M., which is the combination of consistent mass matrix and lumped
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mass matrix. It can be written as
M, =pM: + (1 — ﬂ)Mi (12)

where f is the binding coefficient, which is equal to 0.5 in this paper, M

and M. are the consistent mass matrix and lumped mass matrix
respectively, and the formulas can be expressed by:

M:=x f N"Ndy (13)
;1
M, = EXAI(xxs) (14)

where N is the shape function of the Q-4 element, A is the area of one
element, and I(g.s) is the identity matrix. Obviously, all the elements are
the same in size. The element mass matrix is only dependent on the
variable x.

4. Sensitivity analysis and algorithm implementation

Since the objective function of Eq. (9) is consisted of two different TO
problems, and both of them are depended on variables x; and y; instead
of the weight y, in this section, the objective function of multi-objective
TO will be separated into two parts (steady-state heat conductivity
optimization and natural frequency optimization) to analyze the sensi-
tivity respectively. And then it will be put together to get the sensitivity
of the multi-objective problem.

Firstly, for both of two different objective functions, stiffness matrix
is defined before sensitivity analysis. According to the finite element
analysis, the element stiffness matrix can be obtained through the
following formula

K, = /BDgde (15)

where B is the strain—displacement matrix. Referring to Eq. (8), the
effective elastic matrix and effective thermal elastic matrix of the
element containing multiple microstructures can be expressed as.

De(-xi-yi) = (XI)F{(YE)PDg + [1 - (Yi)P]D(ll} (16)

where D, indicates the effective elastic matrix of element-i, D} and Dj
are the elastic matrixes of the microstructure-1 and microstructure-2
used to fill in the element. The element stiffness matrix can be ac-
quired by combining Eq. (15) with Eq. (16).

Secondly, the sensitivity of heat conductive TO is analyzed. Its
objective function can be found in Eq. (10) of section 3. When using the
multiple materials interpolation scheme, the elemental heat conduc-
tivity matrix depends on variables x;; and Y- According to the chain rule
and the adjoint method [21], the derivative of the thermal compliance
with respect to variables x; and y; can be written as

ac +oK"
9 _ g%y
ox; “ax; ¢
I’
=-T". B”?B"dv-]‘e
v i 17)
= fT:'-/B‘“ow WDg + 1 - (yi)P]D(', } B'dv T,
— g f BP0+ [1— (v)"]D) ) Bl T,
Combining with Eq. (16), Eq. (17) can be rewritten as:
B
€ _ gy _  poiaTkAT, (18)
a5 o, i R,
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Fig. 1. Loads and boundary conditions for Example 1.
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where DZ‘ indicates the effective thermal elastic matrix of the i-th
element, B" is the strain-displacement matrix in heat conductive opti-
mization. K% and Kfl1 can be obtained through the expressions:

K= / B'D B*dv (20)

Ki= / B"DI*B"dv (21)
N

where Dgl and Dgg are the thermal elastic matrixes of microstructure-1

and microstructure-2, respectively.

Thirdly, according to Eq. (11), the first derivation of the eigenvalue
TO objective function with respect to variable x; can be expressed as

10K rOM.

o’ _u‘ xiu,‘u;f"MEu,‘ —u! Kuu! Tx,-u‘
0x; (u;"'Meu[-)z
. aD, oM,
u’ fB Bdv — w} u; (22)
o S\, ox; ox;
a u;"Meu[-
B ul-P-(x; K, — ojx "-M,)u;
- u?‘Mgu;

Known from Section 3.1, the element mass matrix is independent of
the material distribution in a certain element, which is determined by
the variable y,. Consequently, the first derivation of w? with respect to
the variable y; can be expressed as:

wi _ Mat
a: H;[.Meu; (23)
Pl (K K
N u;f"MEu,‘
where K; and K, can be obtained through the following formulas:
K- / BD!Bdv (24)
K, = /B DB dv (25)

Finally, combining the sensitivity of heat conduction and natural
frequency, the sensitivity of the multi-objective function can be directly
derived as.

oF aC  odw’
=] )= —w—L 26
6x,- ( W) aJC; v a)(,‘ ( )
JoF acC ow?
(] - — ! 27
dyi ( W) ayi v oyi 27

The optimization problem can be solved using several different
methods such as Optimality Criteria (OC) method, Sequential Linear
Programming (SLP) methods, the Method of Moving Asymptotes
(MMA), etc. Among them, OC method is widely used for its simplicity.
To reduce the computation time, this paper adopts the OC method. A
heuristic updating scheme for the design variables can be formulated as
[591]

max(0,a. — m) if a.p!<max(0,a, —m)
min(1, a, +m) if a.p!>min(0,a, + m)

new
[44 p—

e

(28)

a.p! otherwise

where m (move) is a positive move-limit that is defined to limit the
variable change range, 5(=1/2) is a numerical damping coefficient, a,
can be variable x or y of the element in this paper, F* can be the objective
function of steady-state heat conduction TO problem or eigenvalue
optimization problem, and f, is calculated from the optimality condi-
tion, such as:

JF* av
Bo= (S )G

) (29)

where ) is a Lagrangian multiplier that can be found by a bi-sectioning
algorithm so that the volume constraint is satisfied. And the sensitivity
of the material volume V with respect to a, is:

av _
oa,

1 (30)

In the process of multiple materials optimization, it should be noted
that the OC method will be employed to update both the variables x and
y simultaneously.

5. Numerical examples and discussion

This section presents three numerical examples to show the feasi-
bility and advantage of the proposed multi-objective TO method.
Exanple 1 presents a numerical example to validate the effectiveness of
the proposed method. Example 2 changes the objective functions of the
proposed method and proves that the proposed multi-objective TO
method also works under the situation that considering the mechanical
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y =0.0000 y =0.0400

y =0.8000

¥ =0.91000

. Material a

w =0.2000 ¥ =0.6000
= 0.9400 y =1.0000

. Material

Fig. 2. Optimization result filled by multiple microstiuctures in Example 1.
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Fig. 3. Load and boundary conditions for the validation case.

compliance and thermal compliance at the same time. Example 3 fo-
cuses the optimized results under different material proportions.
Furthermore, a self-selected weight sum method that connect the target
objective function values with the optimized structures directly is
exhibited in Example 3.

5.1. Example 1

Fig. 1 shows the design domain, load and boundary condition of the
macrostructure. The properties of the base material have also been
shown. The macrostructure is meshed with 40 x 40 linear quadrilateral
elements. A distributed heat Q is applied in the entire design domain,
which assumes Q@ = 0.01W/m?2. A small rectangular region is located in
the middle of the design domain, where the elements are of much
greater mass, mimics the load of the structure [31]. In addition, a
rectangular plate with a heat sink is set in the middle of the left side. The
final optimal volume should be 50 % of the design domain. The value of
the penalization exponent P is equal to 4, and the filter radius is set to be
1.5.

To validate the feasibility of this method, macrostructures in
Example 1 will be filled with multiple microstructures, which are ma-
terial a with area of 50 % and material § with area of 30 % respectively
(see Table 1). When the weight coefficient y (see Eq. (9)) is set as several
fixed values, the results can be seen in Fig. 2.

The results in Fig. 2 demonstrate that the structure evolves smoothly
from the full heat conduction to the full natural frequency. When the
weight coefficient y is set as a value close to 0, the macrostructures are
close to the full heat conduction situation with some ‘tree-like’ branch.
As the value of y increasing, the macrostructures gradually change to-
ward the full natural frequency situation. It proves the effectiveness of
the employment of the multi-objective method.

5.2. Example 2

The multi-objective topology optimization considering the natural
frequency and thermal compliance at the same time is presented in this
paper. However, the proposed multi-objective in this paper also works
when the other objective functions are considering. Following the step of
[60], a validation case is presented in this section. In this example, the
optimization model considers the mechanical compliance and thermal
compliance at the same time. Fig. 3 shows the design domain, load and
boundary condition of the macrostructure. The properties of the base
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w = 0.0000 w = 0.2000 w = 0.4000

W = 0.6000 W = 0.8000 w =1.0000

Fig. 4. Optimization result of Loadcase 1 in [60].

(a) (b) (c)

= 0.0000 ¥ =0.2000 ¥ = 0.4000
CMech _ None OVl — 4839401 CY = 3753877
C = 645.8581 C =1754.7500 C =797.9957

(e) (H

¥ = 0.6000 ¥ =0.8000 ¥ =1.0000
CMeh — 3154857 C"" =269.3769 " =202.1024
C =858.2713 C =958.4657 C = None

Fig. 5. Optimization result of the validation case (single material situation).

material have also been shown. The macrostructure is meshed with
100 x 50 linear quadrilateral elements. The final optimized volume
should be 30 % of the design domain. A distributed heat Q is applied in
the entire design domain, which assumes Q = 0.001W/m?. A heat sink is
set in the middle of the left side. And a force is applied in the bottom
right corner of the design domain, which assumes F=2000N. The value
of the penalization exponent P is equal to 3, and the filter radius is set to
be 1.5.

The weighted-sum method is used to formulate the multi-objective
optimization model in this case as:
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(a)

(b) (c)

w =0.0000 w = 0.2000 w = 0.4000
CY" = None CYeh = 464.6086 CY" =367.6100
C =558.2603 C =701.7660 C=752.3214

(d)

(e) ()

w = 0.6000 w = 0.8000 w =1.0000
CMeh = 306.4902 CMech = 253 5349 CMeh = 149.1658
C =805.3305 C =944.6723 C = None

. Material &

- Material S

Fig. 6. Optimization result of the validation case (multiple material situation).

E, =2x10
E'=1

e =03 -

L/3

T=

Fig. 7. Load and boundary conditions for Example 3.

Find @ x = [xi,x2,X3, ..., Xn),
¥ = V1,2, V3, oy Y]
Minimize : Ohbj = yCY"" 4 (1 —y)C
Subject to : K'T = f,
KU = FMech

Vemax — Z Vix; =0 (31)
i=1

n
Vimas = > Vivi =0
i=1!

O S E X $ 1

O0LY min <Yi LY max € 1
0<y<l

where U is global displacement, FM*" is the force vector, C¥*" is the
mechanical compliance, which can be calculated as:

N
et =U'KU =" ulku, (32)

i=1

where u, and k, are the element displacement vector and stiffness ma-
trix, respectively.

The sensitivity is needed to update the variables by applying the OC
method. The sensitivity of heat conductive TO can be seen in Eq. (18)
and Eq. (19). According to the chain rule and the adjoint method, the
derivative of the mechanical compliance with respect to variables x; and

Y can be written as
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@)

w = 0.0000
@’ =61.8095
C =420.6394

(b)

w =0.2500
@’ =77.1491
C=421.7748

(©)

w =0.5000
@’ =79.0910
C=436.1222

(d)

= 0.8000
@* =80.7929
C =516.4634

(e)

w =0.9500
@ =84.5486
C =525.0297

89

¥ =1.0000
@ =85.5875
C =543.1097

Fig. 8. Optimization result of case 1.

JMech _ u't'ngu
d’(,‘ ¢ 6x,- ¢
. aD
= ui fB —<B dvu,
v 6xi
=-T / BPx" '[P+ [1 — (v)"|D) } B*avT,
e . i {-r 0 [ ( } (F} (33)
e / BRLLYDE 1[I (3)']D) ) BlavT,
=-TIx! / B PD,B"dvT,
= —Px;'u'K,u,
aCMe'(‘h _ u]‘aKgu ,
ady; “ay
. aD
= ui -[B d—"B dv-u, (34)
v Vi

= P-xf»v("»uzi-(Kz K,)u,

Ji

Combining with Eq. (18) and Eq. (19), the sensitivity of the multi-
objective function can be directly derived as:

J0bj QCMech ac
— 1 35
il G F(—w) an (35)
00bj gCMech ac )

The optimized structures in [60], which are shown in Fig. 4, are used

as the standard to prove the feasibility of the proposed method.

In this case, the structures are filled with material g with area of 30 %
and the optimized structures can be seen in Fig. 5.

The optimized results above show that the topology of the optimized
structures change significantly with the change of the weight coefficient.
Besides, the optimized structures in Fig. 5 has similar structural char-
acteristics to that in Fig. 4. When the weight coefficient is equal toO or 1,
the proposed multi-objective optimization method degenerates into a
single-objective optimization method. Therefore, in the cases of y =
0.0000 andy = 1.0000, only the value of the objective function with a
weight coefficient of 1 is calculated, and the value of the objective
function with a weight coefficient of 0 is represented by None.

To show the difference in macroscopic structural properties when
filled by multiple microstructures, numerical example with the same
loads and boundary conditions is performed. Material § with area of 30
% and material a with area of 50 % are used for filling, and the volume
ratio of material /f to material a is 2:1 (v4,,=2). The optimized results can
be seen in Fig. 6.

Comparing with Fig. 5, the structures in Fig. 6 has better perfor-
mance in both the mechanical compliance and thermal compliance.
Therefore, we can draw a conclusion that the proposed multi-objective
topology optimization method is still feasible under the situation that
considering both mechanical compliance and thermal compliance at the
same time. Meanwhile, the optimized structures with better perfor-
mance can be obtained by applying the MMTO.

Here in example 2, a typical numerical example of multi-objective
topology optimization is selected to verify the proposed method. Be-
sides, we expanded this numerical example to multiple materials situ-
ation to better demonstrate the advantages of the optimized structures
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(a)

w =0.0000
o =87.3428
C=221.9100

(b)

w =0.1000
@’ =110.5647
C =222.8816

(©)

y =0.2500
o’ =111.8425
C =235.7064

(d)

w =0.3000
@’ =112.5700
C =245.8463

(e)

w = 0.6000
o’ =118.3276
C =278.8805

®

w =1.0000
@ =122.3743
C =289.1691

Fig. 9. Optimization result of case 2.

filling with multiple materials. Similar works can be found in [61], in
which the constraints and loading conditions of the design domain are
different from the examples above.

5.3. Example 3

Fig. 7 shows the loads and boundary conditions of the design
domain. The properties of the base material have also been shown. The
macrostructures are meshed with 100 x 30 linear quadrilateral ele-
ments. A small rectangular region is located in the middle of the design
domain, where the elements are of much greater mass to mimics the
structural load [31], while a rectangular plate with a heat source is set in
the same place. Similar to Example 1, the optimal volume should be 50
% of the design domain. The value of the penalization exponent P is
equal to 4, and the filter radius is set to be 0.75.

5.3.1. Filled by single-phase material

To show the advantage of the MMTO method, firstly, assuming that
the macrostructures are filled by single-phase microstructure, which
contains three cases. In case 1, the structure is filled by material g with
area of 30 %. In case 2, the structure will be filled by material f with area
of 50 % to show the influence of area to the values of objective functions.
In case 3, the structure is filled by material a with area of 50 % to show
the influence of the lay-out of lattice to the values of objective functions.
In all the cases, several weight coefficients are selected and multi-
objective topology optimization was carried out. The result can be
seen in Figs. 8 and 9.

As area change from 30 % to 50 %, the lattice will have better
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performances in both the heat conduction and the natural frequency.
Comparing with the results in Fig. 8, macrostructures in Fig. 9 have
higher natural frequency and lower thermal compliance.

In Fig. 10, the lay-out of macrostructures and the process of struc-
tural changing is similar to that of Fig. 9. From the perspective of
objective functions, material @ performs better in heat conduction while
material # behaves better in natural frequency. For example, when the
weight coefficient y is equal to 0.6, the structure in Fig. 9 has higher
natural frequency and thermal compliance comparing to the structure in
Fig. 10. This kind of difference becomes bigger as the value of weight
coefficient y changes from O to 1.

5.3.2. Filled by multiple materials

To show the difference of macroscopic structural properties when
filled by multiple lattice materials, numerical example with the same
loads and boundary conditions is performed. To demonstrate the rela-
tionship between the optimized results and material proportion, it
contains two cases: (1) the volume ratio of material # to material «a is
equal to 4:1, i.e. vg,=4 (case 4), and (2) the volume ratio of material ff to
material a is 2:3, v3.,=2/3 (case 5). In this section, area of material f is
equal to 30 % and area of material a is equal to 50 %. In case 4 and case
5, to analysis the convergence performance of the proposed method,
parameter change is used as the basis of iterative convergence. The
iteration converge when change is less than 107, which can be calcu-
lated by using the following formula:
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()

w = 0.0000
o =85.9958
C =220.4766

(b)

y =0.1000
@’ =105.5436
C =222.0331

(c)

w = 0.2500
@’ =108.6519
C =231.0900

(d)

w = 0.3000
®* =108.7616
C =236.9059

(e)

w = 0.6000
w’ =111.7992
C'=270.5983

®

y =1.0000
@’ =115.9696
C =276.3772

Fig. 10. optimization result of case 3.

loop 5 loop
‘Eh}t}p 9F i Ziloop 4Ff

loop
| F;

change = (37)

where loop and loop-i represent number of iteration.

For case 4 with v4.,=4, the optimized results of some fixed coefficient
w can be obtained as Fig. 11.

From the perspective of the objective function values, it is closer to
the situation of Fig. 8 because of the dominant quantity of material .
Similarly, for case 5 with v4.,=2/3, the results can be seen in Fig. 12.

Before the analysis of the optimized result, a necessary validation of
the mesh sensitivity and the performance of convergence is presented
here. The following analysis of the proposed method are made with the
volume ratio of vy.,=2/3.

Firstly, to validate the performance of the method against mesh
sensitivity, two other mesh are applied here, which are 150 x 45 and
200 x 60 respectively. The optimized result can be seen in Fig. 13.

As can be seen, optimized structures in Fig. 13 are similar to that in
Fig. 12. This proves that the proposed method has a good performance
against mesh sensitivity.

Secondly, as shown in Fig. 11 and Fig. 12, for most of the weight
coefficients, convergence occurs at between 25 and 50 iterations. When
the weight coefficients are around 0.5, it may need more iterations to
reach convergence. This proves that the proposed method has good
performance in convergence.

As for the optimized results, the optimized structures in Fig. 12 are
closer to those of Fig. 10. Combining with Fig. 11, we can draw a
conclusion that the optimized result depends mostly on the properties of
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the abundant material. By changing the proportion of different mate-
rials, the MMTO can enlarge the result domain.

To prove this, ranging the weight coefficient y from 0 and 1, over
400 sample points are taken to establish the result domain of the all
cases above. The scatter diagram is used to describe the result domain,
which can be seen in Fig. 14:

As shown in Fig. 14, firstly, by employing the multiple materials
method, the result domain with a smoother change are obtained. While
in the case filling by single phase material, the value of thermal
compliance might vary dramatically in a small interval. It means that the
employment of multiple materials TO provides the macrostructures with
a more continuous optimized results.

Secondly, the use of multiple materials TO expands the result do-
mains. As seen from the Fig. 14, area A and area D represent the
allowable design domains filled by material # and material «, respec-
tively. Points above the boundary can be obtained by changing the value
of y, while points in the design domains can be obtained by decreasing
the final optimized volume of the structure or by using a base material
with slightly inferior properties to fill the lattice. Area B and area C
represent the allowable design domains of case 4 and case 5 respec-
tively, which cover extra design domains outside the area A and area D.
By changing the proportion of materials, the result domains of multiple
materials optimization will move to that of single-material optimization
with dominant quantity. When ranging the proportion of materials vg.q
from oo to O (from single-phase material f to single-phase material a),
area E in Fig. 15 can be obtained, which is an overall additional design
domain when using the MMTO method comparing with area A and area
D.

The optimization results can be preserved by the fitting function of
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y =0.0000
loop _end =29

o =67.8411
C =299.0598
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y =0.2000
loop _end =30

" =81.8941
C =306.4170

(©

w =0.4000
loop _end =35

o =84.6519
C =326.7937

(©)

w =0.9500 @’ =91.7538
loop _end =41 C=412.3638
. Material «

(d)

w =0.8000
loop _end =53

» =89.7136
C=411.0746

:

®

w =1.0000
o =92.9458

w =1.0000
loop _end =38

. Material 8

Fig. 11. Optimization result of case 4 with v, = 4.

the result domain. Taking case 5 as an example, the result domain can be
seen in Fig. 16.

The relationship between the natural frequency and the heat po-
tential capacity can be described using the fitting function, which can be
written as:

C = 0.002631-(w?)" — 0.5364- ()’ +35.02- () — 465.4 (38)
where the R-square is equal to 0.988. It means that in most of the situ-
ation, every point selected on the curve has an actual structure that
corresponds to it. Similarly, the relationship between the weight coef-
ficient and the two objective functions can be established in the same
way, which can be seen in Fig. 17 and the fitting functions can be written
as:

C= — 1668y +3154y% — 71.81y +254.7 (39)

W = 3T ATy — 7597 + 6449y + 7738 (40)

which the R-square is equal to 0.9919 and 0.9776, respectively.

5.3.3. A self-selected weight sum method

A self-selected weight sum method that provides a new way to obtain
optimized structures with given objective values is presented here. This
method is based on the fitting functions of the result domains and the
bisection method. The procedure of employing the method can be
depicted in Fig. 18, and the algorithm implementation is explained in
Table 3.
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The objective functions will vary by changing the value of the ma-
terial proportion. In the procedure of employing the self-selected weight
sum method, the marterial proportion interval will be subdivided in each
iteration and changing the material proportion according to the objec-
tive functions value of the target result point.

Herein, an example is presented here to further express the proced-
ure of employing the method above. Material a with area of 50 % and
material g with area of 30% are used for filling. Assuming that the target
objective function value are @2 = 75, C = 350. The acceptable error err
of the result point to the target result point is set as 5%. As seen from the
Fig. 14, the result domain of material « and material f can be obtained. It
can be shown in Fig. 19.

The initial design domain is separated into several subdomains by
the result domains of multiple material situations. As seen from Fig. 19
the target result point can be found between the result domain of single-
phase material g and the result domain of multiple materials situation
that vg.,=4. To get the target result point, the volume of material # needs
to be increased compared with the case of vg,=4.

Using the bisection method, increasing the volume of material g, the
result domain can be seen in Fig. 20, when vy, is set as 9 temporarily, the
result domain is not close enough to the target result point. The fitting
function under this situation can be written as:

C = —0.002821-(a?)" + 1.048-(w?)” — 107.3-(e?) + 3658 41

When @,? = 75, according to Eq. (41), C = 315.3906. The error in
this situation is equal to 9.888%, which is larger than the acceptable
value.



W. Chen et al. Composite Structures 304 (2023) 116322

w =0.0000 o’ =72.3028 w =0.2800 o =87.9884
loop _end =23 C =253.2686 loop _end =25 C =252.4816

(d)

y =0.5000 @ =95.1941 v =0.6000 o =96.0131
loop _end =30 C =276.0066 loop _end =44 C =292.7135

w = 0.8000 @’ =101.1276 ¥ =1.0000 @’ =103.8733
loop _end =30 C =313.5291 loop _end =28 C =336.0689

| Material

. Material o

Fig. 12. Optimization result of case 5 with vy, = 2/3.

(a) w =0.0000 (e) w =0.0000

(b) w=0.5000 () w=0.5000
(c) w=1.0000 (2) w=1.0000

Fig. 13. Optimization result of the validate case 1 with v;.,—2/3 (Fig. 9(a) to Fig. (c) are the optimized structures under the mesh scale of150 x 45, while the other
figures are the optimized structures under the mesh scale of 200 x 60).
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Area A:Design domain filled by single-phase material
Area B:Design domain of case 4(vg=4)

Area C:Design domain of case 5(vp,=213)

Arca D:Design domain filled by single-phase material ¢

580 = i i - |
g i -
540 | + Material B
| | & Matp:Mat o=4:1
o 500 p i | » Matp:Mat a=2:3
5] | ¢ Material a
= 460 . T
E420} ’
= 1
5380 !
- l
=340 i
= ’ ‘B |
2300t ‘
= C e
260 1 p ing a
D -
220+ EEmETm g
180 |- i i i i i i e i i ’e i J
60 65 70 75 80 85 90 95 100105110115 120
Natural frequency
Fig. 14. Optimization result domain of several cases.
Area A:Design domain filled by single-phase material
Area D:Design domain filled by single-phase material «
Area E:Overall additional design domain using multi-material TO method
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Fig. 15. Optimization result domain and the overall extra design domain.
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Fig. 16. Optimization result domain of case 5.

Keep increasing the volume of material f§, whose material proportion
is set as 19, the result can also be seen in Fig. 20. Each result point has its
corresponding objective function value, weight coefficient of each
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objective function and material proportion. The relationship between
objective functions and the relationship between objective functions and
weight coefficients can be expressed by fitting functions. Eq. (42) shows
the relation between thermal compliance and the natural frequency,
while Eq. (43) and Eq. (44) represent the relation between the objective
and weight coefficients. The fitting function under this situation can be
written as:

€ = 0.0006281-(w?) +0.2583(?)" — 46-(?) + 2072 (42)

C= —383.1y" +626.8y” — 131.5y +342.2 (43)
2 3

w? = 44.82y” — 84.06y* + 60.4y + 68.06 (44)

When @,? = 75, according to Eq. (42), C = 339.9172, which is close
to the target result point. Referring to the Eq. (43) or Eq. (44), the weight
coefficient can be obtained, which is equal to 0.2243. Put the value of i
into the main algorithm, the objective functions are w,2 = 77.3812,C =
341.2140 respectively. This error of @ and C between this situation
and the target result point is equal to 3% and 2.5% respectively, which is
acceptable. And the optimized structure can be in Fig. 21.

As seen from the above example, the weight coefficient and the
optimized structure can be obtained directly by employing the self-
selected weight sum method. When the acceptable error is set as 5%,
in most cases, the target result point can be obtained after 3 iterations. It
can be smaller when the target result point is placed in a material pro-
portion interval that the result domains are closer to each other.

In example 1 to 3, two kinds of microstructures with isotropic ma-
terial properties are used for filling. However, the proposed multi-
objective optimization method also works for orthotropic or aniso-
tropic materials, where only the constitutive equations of materials are
different from that of isotropic materials.

6. Conclusions

This paper has proposed a multi-objective optimization algorithm to
design a structures with lower thermal compliance and higher natural
frequency at the same time. It is based on the steady-state heat con-
duction TO and eigenvalue TO. The homogenization method is used to
calculate the effective properties of the microstructures used for filling
in the macrostructures. To prove the feasibility of this algorithm, several
numerical examples is presented in this paper. The following conclu-
sions can be drawn by analyzing the result of numerical examples:

(1) The multi-objective optimization method is feasible in both the
single-phase material and multi-phase material situations. It
succeeds in providing the macrostructure with a lower thermal
compliance and higher natural frequency. Besides, the proposed
method is also suitable for the situation that considering the
mechanical compliance and thermal compliance at the same
time. A more continuous optimized results can be obtained by
employing the multiple materials topology optimization;

The result domains are largely expanded by using the MMTO
method. The result points between the single-material result
domain can be obtained by changing the proportion of the
materials;

Besides, a self-selected weight sum method that is based on the
result domains of both single-phase and multiple materials situ-
ations is proposed. An example is presented to show the pro-
cedure of employing the method. The result demonstrates that
the target result point can be found using this method within a
certain error range. This method provides a more flexible way to
get the optimized structures directly after the requirement is
determined.

(2

—

(3

—

Due to the limitation of time, in this paper, only the concept of the
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Fig. 18. Flow chart of the self-selected weight sum method.

method and some simple numerical examples in 2D domains are pre-
sented. In future, the following works are needed to be done with the
purpose of improving the method. Firstly, some extended applications in
plate, shell and solid problems will be done in future studies. Besides, the
multi-objective optimization algorithm is expected to combine with
acceleration algorithms [62,63] and artificial intelligence algorithms
[64] to improve the computational efficiency and provide a more precise
method of selecting weight coefficient.
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Table 3
The self-selected weight sum method.

The self-selected weight sum method

1 Define the basic parameters of TO, and select the filling materials

2 Given the target values of each objective, and define the expected error err

3 Initialize the biggest value of the difference between each objective function
and the target value b-err to err 4 0.1

4 Calculate elastic matrixes and thermal elastic matrixes of the filling materials

5 Find out the result domain of each filling material and form up the overall

feasible result domain

6 if b-err > err then

7 Adjust the material proportion and find out the result domain.

8 Solve the approximate result point inversely

9 Calculate b-err

10 else

11  Solve the weight coefficient of each objective inversely, and obtained the
optimized structure.

12 endif

13 Return the optimized result
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Fig. 21. The optimized structure of the target result point.
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