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A B S T R A C T   

Engineering designs involving multiple materials suffer either difficult interface modeling or finding physically 
meaningful transition domains with a clear or even optimal structural representation. However, previous ma
terial interpolation models often cannot achieve either of them. A new function interpolation scheme is proposed 
in this work by leveraging the triply periodic minimal surfaces (TPMS). This TMPS-based architecture will serve 
as the infill morphology at the microstructural scale, while its distribution at the higher structural scale will be 
achieved by topology optimization (TO). The moving morphable component (MMC)-based TO is adopted to first 
reduce the number of design variables and then provide explicit structural geometries. For finite elements where 
multiple materials exist (or the overlapping component area), level set functions are constructed to identify the 
interpolation parameters to determine the TMPS with clear material characteristics. This framework will thus 
allow us to generate new architected materials associated with the optimized design variable at the structural 
scale, while guaranteeing a smooth and meaningful transition at lower material microstructures. Numerical 
examples show that stress concentration can be significantly reduced because of the distinguished compatibility 
inside the heterogeneous structure, which leads to its successful manufacturing by the 3D printing. Finally, a real 
engineering case for the design of an automotive connecting rod is presented to illustrate the versatility of the 
proposed approach.   

1. Introduction 

Triply periodic minimal surfaces (TPMS), which widely exist in the 
natural world especially in biological tissues [1–3], have a state with 
minimum energy under finite boundary conditions. Their superior me
chanical and many other multi-functional properties attract great in
terest from researchers. The feature we leverage most in this work is that 
TPMSs can be expressed parametrically to be optimally designed. Due to 
this property, the transition between two different architectures can 
easily be implemented. These periodic structural architectures that can 
be expressed parametrically have already been proven to have signifi
cant advantages in solving certain challenges, e.g. the quarter unit cells 
with rectangular holes close to rank-n laminates are suitable for stiffness 
optimization [4]. TPMSs are also combined with the Generative 
Adversarial Network-based Machine Learning techniques [5] in the 

context of inverse homogenization design for metamaterials and struc
tures. In addition to that, TPMSs also have other useful attributions such 
as high surface-to-volume ratio [6], good inner-connectivity [7], high 
specific strength and stiffness to relatively low mass [8,9], and optimal 
fluid permeability [10]. This type of architecture has a wide scope of 
development in tissue engineering, biomedical science, material science, 
and other engineering fields. In this work, TPMSs are introduced here to 
be the infill microstructures for the multiscale engineering design, spe
cifically the structural topology optimization (TO). Their implicit func
tion expressions are interpolated to synthesize new TPMSs for the 
connection area of different materials, so that the accurate structural 
description can be obtained. The optimized properties of the corre
sponding parts will also be acquired correspondingly. 

TO, one of the most intelligent structural optimization methods, fo
cuses on obtaining the optimal material distribution within a prescribed 
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design domain under given constraints. Since the pioneering work of 
Bendsøe and Kikuchi [11], numerous TO approaches have been pro
posed, such as solid isotropic material with penalization (SIMP) [12,13], 
level set [14,15], evolutionary structural optimization (ESO) [16] and 
its variants [17,18], and isogeometric analysis (IGA) [19,20], etc [21]. 
These methods have been widely used in a series of engineering 
[22–26]. 

In addition to the TO methods mentioned above, Guo et al. [27,28] 
proposed a novel TO method through moving morphable components 
(MMC). It uses the topology description function (TDF) to describe the 
layout, position, and geometry features of components and achieved 
optimized topology by optimizing the parameters of components. 
Compared with some traditional TO approaches, the MMC method 
significantly reduces the number of design variables and provides more 
explicit geometries. It thereby attracts extensive attention in TO. Zhang 
et al. [29] used the MMC framework to solve the multi-materials TO 
problems and proposed a method to reduce the number of degrees of 
freedom in finite element analysis. Xie et al. [30] proposed a new TO 
approach combining the MMC-based TO with IGA. To solve the C1 

discontinuity problem of the component-overlapping parts, which may 
lead to the objective function non-differentiable, an R-function is 
introduced to represent the TDF to improve the convergence rate. Liu 
et al. [31] proposed an efficient MMC-based method for multi-resolution 
TO, which can obtain a high-resolution result with fewer design vari
ables and degrees of freedom. Based on the above advantages, our study 
is built on the MMC-based TO framework. 

With the power of additive manufacturing technology which is able 
to control the architecture at the small scale multi-material and multi- 
scale TO is attracting more and more attention. The multi-material TO 
aims to find an optimal distribution of different types of materials in a 
given condition, which can take full advantage of the properties of 
various materials in a targeted manner to meet complex engineering 
requirements [32,33]. Interfacial effects between different phases on 
crack propagation and design of fracture-resistant interfaces are studied 
in [34]. Multi-scale multi-material TO optimizes the architectures at two 
different scales simultaneously [35,36] and aims to provide better me
chanical performance [36–41]. Wang et al [42] proposed a cross-scale 
robust TO approach that considers the uncertainties of loads, and they 
used the filer-projection technique to obtain better micro-configuration 
and improve the manufacturability. One of the key issues in 
multi-material and multi-scale TO problems is to define the suitable 
transition between different materials, while the previous interpolation 
schemes often cannot solve the problem. Bendsøe and Sigmund [43] 
used an interpolation scheme based on a rule of mixtures to represent 
the distribution of multiple materials. With the use of this interpolation 
approach, the SIMP method needs n − 1 density functions to represent n 
material phases. Then, many improved material interpolation methods 
were proposed under the SIMP approach [44–46]. In the level set 
framework, Wang et al. [47,48] proposed a multi-phase model called 
"color" level-set representation for the multi-material TO, which could 
substantially reduce the number of model functions especially when the 
material phases become large. This approach has been generalized and 
well applied to many multi-material TO problems [49,50]. Wang et al. 
[51] proposed a multi-material TO method based on the material-field 
series-expansion model, which introduces several individual material 
fields to represent the distribution of materials. This method signifi
cantly reduced the number of design variables and gave the optimization 
formulation without additional constraints. However, since most of the 
previous methods only considered how to numerically approximate the 
material properties of these parts, they cannot provide an explicit ar
chitecture for the transition or overlapped parts for different materials. 
Thus, it is necessary to find a way to efficiently represent the transition 
area by using distinguished structural architectures with clear material 
characteristics. 

This paper proposes a TPMSs-infill multi-microstructures TO 
approach based on the MMC framework, where the properties of the 

overlapped components with multiple materials are taken into account. 
A TPMS implicit function interpolation scheme is proposed to provide 
explicit descriptions of structures in the overlapped parts. To do so, the 
Fourier expressions of TPMSs are interpolated, and the synthesized 
TPMS formulations are combined with the topological description of the 
components in MMC framework. During the TO, the morphology of infill 
microstructures will be adjusted with the overlap of multiple materials. 
Meanwhile, the properties of different composed microstructures are 
measured and fitted before the TO process, so that the performance 
parameters and the determined infill microstructure of the elements can 
be obtained. Utilizing the performances of TPMS, the discontinuity and 
high-stress concentration issues caused by the microstructural mismatch 
in the multi-material can be overcome, and a smooth transition between 
different materials is achieved. 

The remainder of this paper is organized as follows. Firstly, the 
framework of MMC-based TO and the way of generating TPMSs are 
presented in Section 2. Next, key techniques that enable the imple
mentation of the proposed design optimization framework are intro
duced in Section 3. This includes the interpolation scheme for 
generating new structures, finite element analysis, the method of 
combining microstructural morphology with element information, as 
well as the sensitivity analysis. This section will also provide a flowchart 
of the proposed algorithm and will be followed by some numerical ex
amples in Section 4. Both 2D and 3D examples are presented in Section 4 
to illustrate the effectiveness of the proposed design methodology. Real- 
world manufacturing and engineering design cases demonstrate the 
practical usefulness of the work presented. This paper concludes in 
Section 5. 

2. Theoretical background 

MMC-based TO and TPMS are the theoretical backgrounds of this 
paper. In this section, the general framework of MMC-based TO and 
some basic theories of TPMS are introduced. We refer readers to [52,53] 
for more detailed discussions. 

2.1. The framework of MMC-based topology optimization 

In the MMC-based approach, there are several components 
embedded in the specific domain. As shown in Guo et al. [54,55], the 
geometry of a component can be represented by the Eulerian 
description-based approach. The following Eulerian description func
tions provide flexible parameters to describe both the geometry of 2D 
and 3D components. For the 2D component, we have: 
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. α, β, θ are the inclined angles of a component from the global 
coordinate system o-x-y-z to the local coordinate system. In Eqs. (1) and 
(3), p is an even integer number, and we take p = 6 in this study [29]. 
Coordinates (x0,y0) and (x0,y0,z0) are the center of 2D and 3D compo
nents, respectively, and the symbol L denotes the half-length of the 
component. The shape parameters of a component, including thickness 
and width, are determined by g(x′

) and f(x′

,y′

), respective, which can be 
expressed as: 

g(x’) =
h1 + h2 − 2h3

2(L)2 (x’)2
+

h2 − h1

2L
x’ + h3 (6)  

f (x
′
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))

2 (y
′

)
2
+
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2g(x′
)
y
′

+ t3 (7)  

hi and ti are the thickness in y and z directions, respectively. A schematic 
diagram of the geometric description of the 2D and 3D structural com
ponents is shown in Fig. 1. 

Another issue for presenting the component is to achieve the TDF. 

Under the framework of MMC, the following level set function can be 
used to describe the region Ω occupied by a component in a given design 
domain D (see Fig. 2(a) for reference): 
⎧
⎪⎪⎨

⎪⎪⎩

ϕ(x) > 0,∀x ∈ Ω

ϕ(x) = 0,∀x ∈ ∂Ω

ϕ(x) < 0, ∀x ∈ D\(Ω ∪ ∂Ω)

(8) 

If there are n components in the design domain, the TDF for com
ponents could be expressed as: 
⎧
⎪⎪⎨

⎪⎪⎩

ϕs(x) > 0, ∀x ∈ Ωs

ϕs(x) = 0, ∀x ∈ ∂Ωs

ϕs(x)〈0,∀x ∈ D\(Ωs ∪ ∂Ωs)

(9)  

where ϕs = max(ϕ1,..., ϕj,..., ϕn) with ϕj, j = 1, ..., n represents the TDF of 
j-th component. Ωs =

⋃n
j=1 Ωj is the region infilled with all the compo

nents. Supposing there are m types of materials introduced in the opti
mization problem, the components can be divided into m groups. All 
components composed of the same material belong to the same group. 
The TDF of the region occupied by i-th material could be correspond
ingly described as: 

Fig. 1. A geometry description of 2D and 3D components: (a) a two-dimensional component and its geometric description function; (b) a three-dimensional 
component and its geometric description functions; (c) a schematic illustration of the rotation transformation. The global coordinate system o − x − y − z is rep
resented in black color and the local coordinate systems are shown in blue. The rotation angles α, β, θ rotate from the global coordinate system to the local coor
dinate systems. 
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⎧
⎪⎪⎨

⎪⎪⎩

ϕsi (x) > 0, ∀x ∈ Ωsi

ϕsi (x) = 0,∀x ∈ ∂Ωsi

ϕsi (x)〈0, ∀x ∈ D\(Ωsi ∪ ∂Ωsi )

(10)  

where Ωsi =
⋃ni

j=1 Ωsi
j , i = 1,2, ..,m represents the region occupied with 

the i-th material (here, the symbol ni is the total number of the com
ponents made of i-th material and 

∑m
i=1ni = n). ϕsi = max(ϕsi

1 , ...,ϕ
si
ni
)

denotes the TDF of the i-th material. As shown in Fig. 2(b), there may be 
regions overlapped by multiple materials. Thus, the symbol Ω is intro
duced to represent these regions in this paper. The property of compo
nents in the overlapped areas is the key issue in this study, and a detailed 
discussion of obtaining the overlapped components’ properties will be 
represented in the next section. 

All the design variables can be expressed in a vector form as D =

((D1)⊤,..., (Di)⊤,..., (Dm)⊤)⊤, where Di = ((Dii
1)
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. 
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ij
1 , t

ij
2, t

ij
3) for 2D and 3D prob

lems, respectively. Based on the previous work [27], the problem 
formulation of the MMC-based TO method is written as: 

Find D =
( (

D1)⊤, ...,
(
Di)⊤, ..., (Dm)

⊤
)⊤

Min I = I(D)

s.t.
gi(D) ≤ 0, i = 1, ...,m,

D⊂U D,

(11)  

where gi is the constraint function of the optimization problem, and U D 
is the admissible set which D belongs to. The classical compliance 
minimization problem is considered, while the proposed scheme can be 
easily applied to other design objectives. The constraints are determin
istic in our framework, and only the volume fraction constraint of solid 
material is considered. For universal uncertainties and time-varying 
design, we refer readers to the work of Wang et al. [56] for details. 
Linear isotropic materials are used. Finally, the topological design 
problem with multiple architected materials in our framework can be 
expressed as: 

Find D =
( (

Di)⊤, ...,
(
Di)⊤, ..., (Dm)

⊤
)⊤

,

u(x) =
( (

u1)⊤, ...,
(
ui)⊤, ..., (um)

⊤
)⊤

Min C =
∑m

i=1

∫

Ωsi

f i⋅udV +

∫

Γt

t⋅udS

s.t.
∑m

i=1

∫

Ωsi

Ei : ε
(
ui) : ε

(
νi)dV

=
∑m

i=1

∫

Ωsi

f ⋅νidV +

∫

Γt

t⋅νdS,∀ν ∈ U ad,

Vi ≤ Vi,

D⊂U D,

u = u, on Γu.

(12)  

In Eq. (12), u and ν are the displacement field and corresponding test 
function on U ad, whereU ad = {ν

⃒
⃒ν(x) = ν1(x), ∀x ∈ ΩS1 ; ν1 ∈ H1(ΩS1 ),

..., νm ∈ H1(ΩSm ), and ν= 0 on Γu} (here, ν is continuous on material 
interface and Γu represents the Dirichlet boundary). u denotes the pre
scribed displacement on Γu and we take u = 0 for simplicity of calcu
lation. The symbol fi and t represent the body force density in Ωsi (the 
region of the components composed by the i-th material) and the surface 
traction on the Neumann boundary Γt (fi = 0 in the following discus
sions), respectively. Ei = Ei/(1+νi)[I+νi /(1 − 2νi)δ ⊗ δ] (I and δ denote 
the symmetric part of the fourth-order identity tensor and second-order 
identity tensor, respectively) is the fourth-order isotropic elasticity 
tensor of i-th material. Ei and νi is the corresponding Young’s modulus 
and Poisson’s ratio, respectively. The symbol ε is the second-order linear 
strain tensor, and U D is the admissible set that D belongs to. Vi repre
sents the actual volume, and Vi is the upper bound of the available 
volume in the design domain for i-th solid material. 

2.2. Triply periodic minimal surface 

In mathematics, a minimal surface is one that has zero mean cur
vature at each point and has the smallest area that satisfies some con
straints. TPMS is an implicit minimum surface period that extends 
infinitely in three independent directions. A parametric and widely used 
form to generate TPMSs is to use approximation equations driven from a 
sum which is defined by Fourier series [57,58]: 

F(r) =
∑

k
Akcos

(
2πhk⋅r

λk
− pk

)

= C (13)  

r is the location vector in Euclidean space, Ak is the magnitude factor, λk 
is the wavelength of periods , hk represents k-th lattice vectors in 
reciprocal space, pk is the phase shift, and C is the iso-surface threshold 
constant. Gyroid (G), diamond (D), primitive (P), and I-WP surfaces are 
four typical and commonly-used TPMS types [59], and their 

Fig. 2. A schematic illustration of the topology description under the proposed 
method: (a) region of two-phase materials as represented by the level-set 
function. The symbol D represents the region of the design domain. Ω is the 
region occupied by solid material and ∂Ω is the boundary of Ω; (b) process of 
constructing Ωsi and Ω. The three different materials are represented in yellow, 
red, and blue colors, respectively. Ωsi

j represents the j-th components made of 

material i and Ωsi denotes the region composed of material i. Ω1,2 denotes the 
region overlapped by materials 1 and 2 and Ω2,3is the region overlapped by 
materials 2 and 3. 
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corresponding CAD designs are shown in Fig. 3. A series of level-set 
equations for these TPMS can be expressed by trigonometric functions 
[60]: 

FP(x, y, z)
= cos(x) + cos(Y) + cos(Z) − C = 0

FG(x, y, z)
= cos(x)sin(Y) + cos(Y)sin(Z) + cos(Z)sin(x) − C = 0

FD(x, y, z)
= sin(x)sin(Y)sin(Z) + sin(x)cos(Y)cos(Z)
+cos(x)sin(Y)cos(Z) + cos(x)cos(Y)sin(Z) − C = 0

F(I− WP)(x, y, z)
= 2[cos(x)cos(Y) + cos(Y)cos(Z) + cos(Z)cos(x)]
− [cos(2X) + cos(2Y) + cos(2Z)] − C = 0

(14)  

whereX = 2πx/Lx, Y=2πy/Ly, Z=2πz/Lz, (x, y, z)∈R3, C∈(− 1,1). Lx, Ly, 
Lz are the unit cell sizes in the x, y, z directions, respectively. C ensures 
the connectivity of the surface and determines the volume fractions 
within the design regions. Different TPMS has their own beneficial 
properties. G-surface has a high strength to low filament usage ratio, and 
P-surface has an advantage in the weight, which could both be used as 
ultralight materials [61]. The TPMS can be easily controlled by changing 
the parameters in their implicit function expression to meet different 
design requirements. 

Porous structures based on the TPMSs can be generated in various 
ways [7,62]. Numerous scaffold designs have driven a paradigm shift 
from CAD-based approaches to computational modeling methods. In the 
present work, the implicit functions of TPMS are used to construct the 
surface model of TPMS. Then, the TPMS surface is offset equidistantly, 
and the constructed surfaces are closed to obtain a TPMS-based solid 
structure. The modeling of TPMSs and TPMS-assembled porous struc
tures can be implemented using the software Rhinoceros3D® and 
Grasshopper® plugin. The volume fraction of a unit cell can be deter
mined by the wall thickness of TPMS-based structures, which is the 
surface offset. 

3. Topology optimization with TPMS-infill structure 

Based on the formulation of TPMS, an interpolation function is 
proposed in this section for constructing new porous structures. To 
establish a connection between the interpolation function and TO, a new 
ersatz material model is proposed based on the TDF in MMC framework. 
In the end, the proposed interpolation scheme and the new ersatz ma
terial model are used in the multi-material MMC formula. 

3.1. The interpolation scheme for TPMS-infill structures 

As discussed in the introduction, previous interpolation schemes can 
neither provide clear transition structures for overlapping components 
nor model interfacial effects between different materials. To overcome 
this issue, we use the interpolation schemes in TPMS implicit function 
expressions. We construct the synthesized TPMSs according to the 
interpolation TPMS functional expressions, and calculate the mechani

cal properties of the corresponding porous structures. These synthesized 
structures can be regarded as the porous materials of the overlapped 
components. The mechanical properties of the overlapping parts can 
thus be unambiguous with the distinguishing architecture. The strategy 
of constructing the implicit function of the TPMSs is expressed as: 

F = λ1F1 + ...+ λiFi + ...+ λmFm = 0 (15)  

where symbol Fi denotes the function of the i-th TPMS and F is the im
plicit function of the composite TPMS. λi is the weight coefficient of the i- 
th TPMS. The interpolation formula is simple and has been implemented 
in previous works [63,64]. However, considering that the proposed 
interpolation method needs to be associated with TO, the selection of 
weight parameter λi becomes the key to connecting the TPMSs expres
sion interpolation with the inverse design. In TO, the proportion of a 
material (in an element) meets the condition between 0 to 1. Taking the 
advantage of this characteristic, the volume fraction of the i-th TPMS in 
the element is used as the weight value λi in the interpolation equation in 
TO. However, it is worth noting that, when there are more than two 
kinds of TPMSs in an element, the sum of λi may be greater than 1. Thus, 
a weighted average for λi is needed. This weight averaging method will 
be introduced in the next section. The combination between the pro
portion of TPMSs and the implicit functions of TPMS can be expressed 
as: 

Fe
=
∑m

i=1
λe

i Fi(x, y, z,Ci) = 0, 0 ≤ λe
i ≤ 1,

∑m

i=1
λe

i = 1 (16)  

where Fe
= Fe

(x, y, z,C1, ...,Cm, λ1, ..., λm) is the composite implicit 
function in the e-th element, and λe

i donates to the proportion of i-th 
TPMSs in the e-th element. As introduced in Section 2.2, once the im
plicit function of the surfaces is obtained, the corresponding solid 
structure can be directly modeled by CAD software. The effective me
chanical properties of the TMPSs are calculated by the homogenization 
approach. The accuracy of the homogenization method has been tested 
using the structures with known properties. The resulting maximum 
error is less than 5% in this work, and this small error does not affect the 
effectiveness of the design approach. Since many researchers have 
analyzed the accuracy of homogenization method in multiscale analysis 
and design problems, we will have no further discussion in this sense but 
refer readers to [65–67] for detailed descriptions. 

In the following analysis of this paper, we take Ci = 0, i = 1, 2, ..., m 
[9]. To ensure smoother connectivity between each cell in the optimal 
result, the wall thickness of the different microstructures needs to be 
fixed in one optimized design. Some examples of periodic structures 
composed of P and G surfaces are shown in Fig. 4(a-e). The Young’s 
modulus and Poisson’s ratio of different surface structures will be 
changed with different values of the weight coefficients for different 
TPMSs. The symbol λG is the proportion of G surface in one element, and 
λP = 1 − λG is the proportion of P surface. Fig. 4(f) represents the 
equivalent Young’s modulus E and Poisson’s ratio ν as a function of the 
value of λG. 

In the multi-material TO, the intersection of two TPMSs in the 

Fig. 3. Four different types of CAD designs of triply periodic minimal surfaces showing 2 × 2 × 2 tessellation: (a) Gyroid surface; (b) Primitive surface; (c) Diamond 
surface; (d) I-WP surface. 
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optimization structure should have a smooth transition for the sick of 
easy manufacturing and avoiding stress concentration. A continuous 
function is thus used here to describe the transition between TPMSs: 

FT(x, y, z,C1,C2) = β(x, y, z)F1(x, y, z,C1) + (1 − β(x, y, z))F2(x, y, z,C2) = 0
(17)  

where β is the weighting function. According to Yang et al. [63], the 
Log-Sigmoid function is borrowed to define β: 

β(x, y, z) =
1

1 + e− G(x,y,z), β(x, y, z) ∈ (0, 1) (18)  

where G(x, y, z) is a continuous function, and G(x, y, z)=0 is a spatial 
coordinate set that describes the boundary between elements. The 
sectional views showing the connecting location of two different struc
tures are shown in Fig. 5 (here, C1 = 0, C2 = 0, G(x, y, z) = x − 5π). 

3.2. Finite element analysis and sensitivity analysis 

Since there might be more than one material/architecture infilled in 
an element for multi-material optimization problems, a new material 
interpolation approach has been proposed in the previous section to 
interpolate the implicit functions of TPMS to generate new architec
tures. In this scheme, the property of the TPMS-architected materials is 
related to the weight coefficient of the TPMS, which will in turn influ
ence the mechanical property of the assembled structure. The MMC- 
based TO, like most TO methods, use the strategy of uniformly 
dividing the design domain into finite elements. According to Zhang 
et al. [54], the ersatz material model is also adopted here to improve the 
efficiency of finite element analysis. Therefore, a connection is 

established between the mechanical properties (i.e., Young’s modulus 
and Poisson’s ratio) of the infill structures and the TDF value of the node 
of the element, and this connection should be also related to the pro
posed interpolation scheme to combine the interpolation expression of 
TPMS implicit function with TO. 

Ee( ρe
1, ..., ρe

m

)
= ρeE (19)  

In Eq. (19), Ee denotes the Young’s modulus of e-th element, and ρe =
∑m

i=1ρe
i is the volume fraction of solid materials in i-th element. The 

symbol ρe
i donates the infill rate of i-th material. E = E(λe

1, ..., λ
e
i , ..., λe

m) is 
the equivalent Young’s modulus of porous structures. λe

i represents the 
proportion of material i in the e-th element, which can be written as: 

λe
i =

ρe
i

∑m

j=1
ρe

j

, i = 1, 2, ...,m, (20)  

It is worth noting that there may be a node of the element that is 
overlapped by multiple materials. If this circumstance is ignored, the 
value of solid materials infill rate ρe is likely to be greater than 2, which 
is infeasible. To solve this problem, a parameter ωek

i is introduced here 
acting as the weight coefficient of Heaviside function on the k-th node of 
the e-th element. The values of ρe

i for 2D and 3D problems can be 
expressed as: 

ρe
i =

1
4
∑4

k=1
ωek

i H
(
ϕek

i

)
(21)  

and 

Fig. 4. Composed structures: (a-e) some porous structures composed of Primitive and Gyroid surfaces with different values of λG: (a)λG = 0.9, (b)λG = 0.7, (c)λG =

0.5, (d)λG = 0.3, and (e)λG = 0.1; (f) diagram of equivalent mechanical properties as a function of the proportion of G surface λG. 

Fig. 5. Planar view of the transition of different structures: (a) from porous structure with λP= 0.5,λG= 0.5 to porous structure with λP= 0.9,λG= 0.1 (from left to 
right); (b) from porous structure with λP= 0.1,λG= 0.9 to porous structure with λP= 0.5,λG= 0.5; (c) from porous structure with λP= 0,λG= 1 to porous structure with 
λP= 1,λG= 0. 

S. Zhang et al.                                                                                                                                                                                                                                   



International Journal of Mechanical Sciences 235 (2022) 107713

7

ρe
i =

1
8
∑8

k=1
ωek

i H
(
ϕek

i

)
(22)  

with 

ωek
i =

⎧
⎨

⎩

1
N
, ifϕek

i ≥ 0,

1, otherwise
(23)  

where ϕek
i is the TDF value of the i-th material for the k-th node of the e- 

th element. In Eq. (23), the symbol N represents the number of materials 
occupying the k-th node of the element e. H = H(x) is the Heaviside 
function. In order to better explain the operation of the proposed 
interpolation scheme, Fig. 6 shows some examples for the above inter
polation scheme. The TDF values of the two materials on the nodes of 
element 2 are obtained in Fig. 6(c), and they can be brought to Eq. (23) 
for the weight coefficient ω2,k

1 and ω2,k
2 (k is the node number). Next, ρ2

1 
and ρ2

2 can be calculated by Eq. (21). We then can bring the ρ2
1 and ρ2

2 to 
Eq. (20) to get λ2

1 = 0.75 and λ2
2 = 0.25. Since the properties of the two 

materials are accessed, the implicit function expression and Young’s 
modulus of the microstructure in element 2 can be obtained according to 
Eq. (16) and the fitted function mentioned in Section 3.1. For the sta
bility of optimization, the expression of the Heaviside function is 

replaced by its regularized version Hε(x): 

Hϵ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, ifx > ϵ,

3(1 − α)
4

(
x
ϵ
−

x3

3ϵ3

)

+
1 + α

2
, if − ϵ < x < ϵ,

α, otherwise

(24) 

In Eq. (24), the symbol ε is the parameter adopted for the magnitude 
of regularization, and α is a relatively small positive number to ensure 
that the stiffness matrix is nonsingular. This paper only gives the 
calculation of Young’s modulus since the way of the calculation of the 
Poisson’s ratio νe is the same. Based on the discussion mentioned above, 
the stiffness matrix of the e-th element is expressed as: 

ke =

∫

Ωe

B⊤DeBdV (25)  

where Ωe is the region occupied by the e-th element, and B is the strain 
matrix. De denotes the elasticity matrix of the e-th element (here, De =

ρeD, D is the elasticity matrix of the porous structure). 
Consequently, the derivative of the objective of compliance and the 

volume constraint with respect to the parameter α for 2D problems can 
be expressed as: 

Fig. 6. A schematic illustration of the proposed interpolation scheme: (a) intersection of two components infilled with different materials. The color yellow and blue 
represent the regions infilled with materials 1 and 2, respectively, and the green region denotes the domain overlapped by the two materials; (b-e) some examples 
about the distribution of materials and the corresponding infill morphology in one element. ϕ is the TDF value of the material on the node, e.g. ϕ2,3

1 is the TDF value of 
material 1 on the 3rd node of element 2. 
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∂C
∂α = − u⊤∂K

∂α u

= − u⊤

(
∑NE

e=1

∂ke

∂α

)

u

= − u⊤

(
∑NE

e=1

∑m

i=1

∂ke

∂ρe
i

∂ρe
i

∂α

)

u

= − u⊤

(
∑NE

e=1

∑m

i=1

(
∂ke

∂Ee
∂Ee

∂ρe
i
+

∂ke

∂νe
∂νe

∂ρe
i

)
∂ρe

i

∂α

)

u

= − u⊤

(
1
4
∑NE

e=1

∑m

i=1

(
∂ke

∂Ee
∂Ee

∂ρe
i
+

∂ke

∂νe
∂νe

∂ρe
i

)
∑4

k=1
ωek

i
∂Hϵ
(
ϕek

i

)

∂α

)

u

(26)  

and 

∂Vi

∂α =
1
4
∑NE

e=1

∑4

k=1
ωek

i
∂Hϵ
(
ϕek

i

)

∂α (27)  

respectively. In Eq. (26), K is the global stiffness matrix, and ke is the 
element stiffness matrix. NE is the total number of elements in the design 

domain. In this work, ∂Hϵ(ϕek
i )

∂α is calculated using the direct partial de
rivative method. The sensitivity analysis for 3D problems can be 
calculated similarly. During the optimization, the method of moving 
asymptotes (MMA) is used to update the design variable. A flow chart of 
implementing the proposed framework is given in Fig. 7. 

4. Numerical examples 

In this section, some numerical examples are presented to illustrate 
the effectiveness and efficiency of the proposed method. All the exam
ples here are minimizing the structural compliance within a given vol
ume constraint. In the following examples, for simplicity, the effect of 
gravity is not considered and all the quantities are dimensionless. The 
initial material phases are selected as three: two solid materials (i.e., P- 
surface-based structure and G-surface-based structure) and one void 
material. The design domain is discretized with 4-node quadrilateral 
elements for 2D problems and 8-node hexahedron elements for 3D 
problems. In the following discussion, material 1 and material 2 are used 
to represent P-surface-based structure and G-surface-based structure 
separately for the convenience of description. The corresponding 
Young’s moduli and Poisson’s ratios are E1 = 4.24, ν1 = 0.217 and E2 =

8.00, ν2 = 0.227, respectively. It is worth noting that, the mechanical 
properties of the two materials above are approximated by the homog
enization method in Section 3.1. The TPMSs microstructure is modeled 
in Rhinoceros3D® software. The process of multi-material TO is then 
implemented in MATLAB®. 

4.1. 2D examples 

This subsection shows several 2D examples to illustrate the perfor
mance of the proposed TO method and presents the difference in opti
mized results when given conditions of the optimization problem are 
changed. Note that components with a particularly small volume will be 

Fig. 7. Flow chart of implementing the proposed design approach.  
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removed through filtering. 

4.1.1. Two-bar beam example 
The classic two-bar beam problem is taken into consideration first. 

The boundary condition for this example is depicted in Fig. 8(a). The left 
side is fixed, and a downward concentrated load is applied at the middle 
of the right edge. The design domain is assumed to be a 1 × 2 rectangle 
area with a unit thickness and discretized with a square mesh 60 × 120. 
We first consider an initial design with the component layout as Fig. 8 
(b), where there are 12 components in the design domain, including 6 
components composed of material 1 and the rest made of material 2. 
Each component has the same shape and size, while the central coor
dination and the angle of inclination are different. The volume fraction 
for the two materials is limited as V1/VD = 0.15 and V2/VD = 0.05. Fig. 8 
(c) depicts the component plot of the optimized structure. The result is 
similar to results acquired by other TO approaches. Material 1 mainly 
distributes at the boundary and the node where the load is fixed. Ma
terial 2 constitutes the load transmission path. 

Three cases are used to show the influence of the initial design. The 
volume constraints of all the cases are the same as the previous one. The 
given initial designs and corresponding results are shown in Fig. 9. The 
numbers of components consisting of material 1 and material 2 are the 
same for the first two cases in Fig. 9. Both of the first two cases have 12 
components in the initial design domain. In the first case here, the 
components composed of both materials are completely overlapped. In 
the third case, there are 4 initial components composed of material 1 and 
two composed of material 2. It is seen that final material layouts in these 
cases are similar and the maximum difference in the objective functions 
is less than 2.5%. 

4.1.2. Short beam example 
The design domain for a 2D short cantilever is plotted in Fig. 10(a). 

The initial design domain is discretized using a mesh of 160 × 80 finite 
elements with a unit thickness. The displacement of the left side is set to 
zero, and a vertical load is applied on the middle point of the right side. 

Firstly, four cases are studied here to show how the different volume 
constraints of the two materials will affect the optimized topology The 
initial designs for these cases are the same, as shown in Fig. 10(b). There 
are 16 components in the design domain divided equally between the 
two materials. Material 1 and Material 2 overlap each other so only the 

cyan color is represented in Fig. 10(b). The different volume distribu
tions and corresponding results are plotted in Fig. 10(c-f). 

To illustrate the optimization process, the case of Fig. 10(c) is taken 
as an example here. Fig. 11(a-d) presents structures for intermediate 
iteration steps during optimization. The difference in the objective 
function values for this case is also compared with optimization using 
only a single material. The iteration history of the objective function is 
shown in Fig. 11(e), including two single-material cases and one multi- 
material case. The three cases have the same initial design and the 
volume fraction constraint of the two single-material cases is set as V/ 
VD=0.4. The objective function values in this example tend to be stable 
after 100 iterations. The final value for the multi-material case is be
tween the two single-material cases, which is foreseeable for multi- 
material TO problem. 

The following example is about different initial designs for the case 
of V1/VD=0.3,V2/VD=0.1. The initial designs and corresponding results 
are demonstrated in Fig. 12. The optimized structures will be similar 
only if their initial designs have similar material and component dis
tributions. The emergence of this situation is predictable and inevitable 
since the problem is nonconvex in nature. Although the optimized 
structures are different, the objective function values have only a slight 
change. 

4.2. 3D example 

In this subsection, the performance of the proposed approach for a 
3D problem is examined. The design domain of the 3D problem is chosen 
as a cuboid region of 8 × 0.4 × 4 as plotted in Fig. 13(a). The left side of 
the design domain is fixed and there is a vertical load at the center point 
of the right side. The computations in this example are performed with 
80 × 4 × 40 eight-node cubic elements. There are 16 components in the 
design domain, and the initial layout and shape of the components are 
shown in Fig. 13(b). The maximum volume fraction is given as V1/ 
VD=0.2,V2/VD=0.1 for the two materials, respectively. The optimal to
pology for this case is shown in Fig. 13(c). Material 2 occupies the right 
boundary of the path that transmits the external load and material 1 is 
shown on the left side, while the two materials alternate in the middle of 
the track. Meanwhile, material 1 also constitutes an X-like structure to 
support the path and transmit the shear force. 

Fig. 8. Two-bar example: (a) design domain, external load, and boundary conditions; (b) initial design; (c) the optimized result and the unit models of material 1, 
material 2, and partial composed structures. 
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4.3. Analysis and manufacture of the optimized result 

When using minimal surfaces as infill materials in traditional multi- 
material TO, one point to consider is how the components composed of 
different minimal surfaces are connected when manufacturing the solid 
model of the optimization result. In some cases, these constructions may 
not be connected, or the connection may result in poor simulation per
formance. These situations can have an impact on the performance of 
the optimization results. In the proposed TO approach, the optimization 
results in multiple microstructures for transition in the region where the 

components of different TPMS are connected. To illustrate the advan
tages of material transitions in the optimization results obtained by this 
approach, an optimized model with transition structures and a model 
with direct connections are generated. These solid models are con
structed based on the case for Fig. 8(c). Structural analysis is performed 
for both models according to the boundary conditions of Fig. 8(a), and 
the obtained von Mises stress contributions are shown in Fig. 14 (a,b). 
The models here are constructed in Rhinoceros3D® and analysis is 
implemented in SimSolid®. It can be easily observed that the stress 
concentration at the junction of two TPMSs has been significantly 

Fig. 9. Optimized topologies with different initial designs for the two-bar example: (a-c) three different cases, including the initial design (the left figure in each case) 
and corresponding optimal result (the right figure in each case), respectively. 

Fig. 10. The 2D short beam: (a) 2D design domain and boundary condition; (b) initial 2D design; (c-f) optimized topology under different volume constraints for the 
two materials: (c) V1/VD=0.25,V2/VD=0.15, (d) V1/VD=0.15,V2/VD=0.25, (e) V1/VD=0.3,V2/VD=0.1, and (f) V1/VD=0.1,V2/VD=0.3. 
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reduced in the model with transition comparing to the model without 
transition. This illustrates that the geometric model obtained by the 
proposed approach has more suitable internal structures and thus fewer 
errors caused by the equivalent property in TO. It is worth noting that, to 
make the microstructures inside the model more observable, a relatively 
coarser mesh is chosen during the modeling and simulation of the 
optimized structure, and the number of TPMS microstructures will be 
decreased correspondingly. Although this reduction will lose some 

accuracy, it would be efficient to quantify the significance of our method 
compared with the old ones. 

The constructed multi-microstructure model is printed by a 3D 
printer (Formlabs Form2 SLA 3D printer) to present the manufactur
ability. The printed model is shown in Fig. 14(c), from which explicit 
microstructures of overlapping components can be seen, verifying the 
manufacturing feasibility of the proposed TO approach. 

Fig. 11. Example for the case of Fig. 10(c): (a-d) four topologies in different intermediate steps: (a) Step 11, (b) Step 46, (c) Step 84, and (d) Step 255; (e) diagram of 
the iteration history of objective function value for single-material and multi-material cases. 

Fig. 12. The optimized topologies with different initial designs for short beam example: (a-d) four different cases. In each case, the left figure demonstrates the initial 
design and the right figure shows the material distribution of the optimized result. The volume constraint of the two materials in (a-d) is V1/VD=0.3,V2/VD=0.1. 

Fig. 13. The 3D cantilever beam: (a) 3D design domain; (b) initial 3D design; (c) the optimized structure with designed distribution of different involved materials, 
where the volume constraint is V1/VD=0.2,V2/VD=0.1. 
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4.4. Practical engineering design for the automotive connecting rod 

To demonstrate the application of the proposed approach in engi
neering, the automotive connecting rod is taken as an example in this 
section. For calculation and presentation purposes, the boundary con
ditions are simplified and the connecting rod is subjected only to 
compression load, as shown in Fig. 15 (a). The two pin holes of the large 
end are fixed in every direction. The design domain is framed in blue. In 
this example, the maximum volume ratios of two materials are V1/V =
0.65, V2/V = 0.35, respectively. The initial design is shown in Fig. 15(b). 
There are 12 components in the design domain and 6 of them are made 
of material 1. The shapes and sizes of all the components are the same. 
The components infilled with material 2 are overlapped with compo
nents made of material 1. 

This example is implemented by using both MATLAB® and ANSYS®. 
Materials distributions of the optimized result and finite element node 
information in ANSYS® are exported to CAD software to generate the 
porous structure model. The optimized rod is presented in Fig. 15(c), 
and the corresponding objective value (structural compliance) of the 
result is 2.26 × 104. Some infill microstructures are amplified in Fig. 15 
(b-c). In Fig. 15(c), the edges of the components infilled with material 1 
are shown in red lines and those of material 2 are marked by blue lines. 

5. Conclusions 

How to deal with interfacial domain is a challenging topic in engi
neering design involving multiple materials. Existing works often 

neglect this challenge or cannot provide a meaningful transition with 
physical characteristics. This work, by introducing a new function-based 
material interpolation scheme, provides an efficient way to conduct 
multi-scale and multi-material structural design considering the inter
facial domain. The specific TMPS architected material serves as the infill 
structure at the lower scale of design, while the overall distribution of 
infill structures is achieved by TO. 

The parameterized representation of TMPS-based porous structures 
makes the structures can be directly combined with TO. A set of level set 
functions are used to identify the interpolation parameters that deter
mine the TMPS with accurate material characteristics. Therefore, the 
structural morphology and corresponding properties of infill micro
structures can be obtained in terms of the interpolation parameters, 
which provides the accurate structural representation of the multi- 
material overlapped regions. In addition, the MMC-based topology 
optimization further reduces the design variable and provides explicit 
geometric representations. 

Both 2D and 3D numerical examples are tested to demonstrate that 
the proposed method successfully generates smooth transitions between 
different TMPSs during the TO, and the smooth transitions overcome the 
microstructural mismatch in conventional methods and significantly 
reduce the stress concentration. An automotive connecting rod further 
demonstrates the effectiveness of the proposed method in practical en
gineering problems. 

The proposed TO method is not limited to infilling TPMS-based mi
crostructures or solving minimum compliance problems. Other physics 
and constraints can be also incorporated into this engineering design 

Fig. 14. The optimized result of the case for Fig. 8(c): (a) the model without transition and the corresponding von Mises stress distribution; (b) the model with 
multiple microstructures (for transition) and its von Mises stress distribution; (c) the 3D printed physical structure. 

S. Zhang et al.                                                                                                                                                                                                                                   



International Journal of Mechanical Sciences 235 (2022) 107713

13

framework as interesting future works. 
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