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A B S T R A C T   

This paper proposes a highly efficient topology optimization using two accelerated methods, which can reduce 
the degrees of freedom (DOFs) of the finite element equations and accelerate the iteration convergence of the 
topology optimization. For the DOF reduction, a method based on the empty elements and the displacement 
change during the topology iterations is presented to remove the DOFs from the finite element equations. For the 
convergence acceleration, a gray-scale suppression method is proposed to accelerate the polarization of design 
variables which accelerates the iteration convergence of the topology optimization. Three numerical examples 
including 2D and 3D cases are tested, and the results show that the proposed method can significantly improve 
the efficiency of the topology optimization and obtain the optimization results with the same accuracy. The 
computational time is only about 7% - 29% compared to the conventional topology optimization method.   

1. Introduction 

As one of the most promising techniques of structural optimization, 
the topology optimization dedicates to search the optimal material 
distribution within a specified design area, which has larger design 
freedom compared with traditional size optimization and shape opti-
mization. In the past three decades, many topology optimization 
methods have been emerged such as homogenization method (HM) [1], 
solid isotropic material with penalization (SIMP) [2] and rational ap-
proximation of material properties (RAMP) [3], evolutionary structural 
optimization (ESO) [4,5] and bi-directional evolutionary structural 
optimization (BESO) [6–8], level set method [9,10] and isogeometric 
analysis [11–13]. These methods can be divided into two types: element 
description and boundary expression, and both of them have their own 
advantages in different applications. Topology optimization has been 
successfully used to solve numerous engineering problems such as 
minimum compliance [14], compliant mechanism synthesis [15], heat 
conduction [16], the design of composite structures [17], fluid struc-
ture interaction [18,19], microstructure optimization [20–22] and so 
on. 

In general, the computational efficiency of the topology optimiza-
tion cannot meet the actual requirements in practical, since the to-
pology optimization problems are complex, which must be solved 

iteratively and the finite element analysis (FEA) is required in each 
iteration. Therefore, it is of significance to pursue efficient strategies to 
speed up the topology optimization fundamentally. Taking the efficient 
88-line MATLAB code [23] as an example, the low efficiency mainly 
reflects in two aspects: one is that the solution of the finite element 
equations is slow, and the other is that the optimization process re-
quires hundreds of iterations, and the FEA problem needs to be solved 
in each iteration. Therefore, speeding up the solution of the finite ele-
ment equations and accelerating the convergence are two key issues to 
improve the efficiency of the topology optimization. 

To solve the finite element equations, there are generally two types 
of methods: direct methods [24,25] such as Gaussian elimination and 
Cholesky decomposition, and iterative methods [26] such as Gauss- 
Seidel iteration method, successive over-relaxation (SOR) method, and 
some others based on krylov subspace like preconditioned conjugate 
gradient (PCG) method and generalized minimal residual (GMRES) al-
gorithm. The computational complexity of direct methods is O(n3), 
while the iteration method is O(n2), whose computational work in one 
iteration is essentially the multiplication operation of matrix vectors, 
and the number of iterations required for convergence is much less 
than O(n) if a suitable preconditioner is selected. Thus, for solving lager 
linear equations, the iteration methods perform better than the direct 
methods in computational time, meanwhile it uses less memory and is 
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easier to be parallelized [27]. The computational time of the iteration 
methods will be further reduced if the DOFs of the equations are re-
duced. Many fruitful methods based on the DOF reduction of the finite 
element equations have been applied to topology optimizations. Amir 
et al. [28] used the approximate reanalysis method in the topology 
optimization to reduce the computational time of FEA, which follows 
the combined approximations (CA) approach [29] that was initially 
proposed by Kirsch [30]. Furthermore, Amir [31] indicated that ap-
proximate reanalysis is more efficient to solve the minimum weight 
problem than the common minimum compliance problem when in-
tegrated with recycled preconditioning and Long et al. [32] proposed a 
novel minimum weight formulation of topology optimization using 
reanalysis approach. The approximate reanalysis method converts the 
solution of the finite element equations into a linear combination of 
several basis vectors. Although the method greatly reduces the DOFs of 
the finite element equations, it requires lots of mathematical operations 
including matrix factorization, constructing reduced basis, and the 
Gram-Schmidt orthogonalization, which increases the computational 
complexity. Gogu [33] proposed a reduced order model (ROM) con-
struction method which dynamically constructed the reduced bases 
using previous solutions of the finite element equations, but the con-
vergence is influenced by the ROM method. Liao et al. [34] solved the 
finite element equations based on multilevel mesh, which can reduce 
the DOFs of the finite element equations in the coarse mesh stage of the 
topology optimization. More methods about reducing the DOFs of the 
finite element equations can be found in [35,36]. 

In terms of accelerating the convergence of the topology optimiza-
tion, reducing some design variables is a good choice than using all 
design variables [37]. Kim et al. [38] proposed a reducible design 
variable method that reduced some design variables which are quickly 
converged so as to accelerate the convergence of the topology optimi-
zation. Liao et al. [34] proposed a local-update strategy that only up-
dated the solid region and its neighbor boundary region. Apart from 
reducing design variables to speed up the convergence, there are still 
some other methods. Zhao et al. [39] proposed proportional and dif-
ferential OC method by combining the fixed-point iteration method 
with differential control theory, which converged faster than the stan-
dard OC method. Okamoto et al. [40] adopted the method of moving 
asymptotes for the topology optimization based on level set function in 
3D magnetic field system and found the convergence was better than 
the conventional level set method. 

Although many methods related to the topology optimization accel-
eration have been already proposed, the highly efficient and accurate 
methods are still worth researching. This paper focuses on the DOF re-
duction of the finite element equations and the convergence acceleration 
of the topology optimization. To reduce the DOFs of the finite element 
equations, this paper proposes a method reducing the DOFs of the finite 
element equations in two steps. The DOFs are firstly reduced by avoiding 
calculating the displacements of the nodes surrounded by empty elements, 
and then further reduced by avoiding calculating the displacements that 
have little change after one iteration. To accelerate the convergence of the 
topology optimization, this paper proposes a gray-scale suppression 
method based on the research [41] to accelerate the polarization of design 
variables which can significantly speed up the convergence. 

The remainder of this paper is organized as follows. Section 2 re-
views the theory of the topology optimization including the powerful 
SIMP, OC algorithm and some knowledge about finite element method 
(FEM). Section 3 introduces the accelerated methods including both the 
DOF reduction and the convergence acceleration. Section 4 presents the 
flowchart of algorithm implementation. Numerical examples are 
showed in Section 5, and Section 6 draws the conclusion. 

2. Theory background 

This section introduces the topology optimization based on SIMP 
using OC method and some knowledge about FEA. For more details 

about these theories, please refer to [23,42–44]. 

2.1. Topology optimization based on SIMP 

For SIMP method, the design domain is discretized into numerous 
finite elements and each element is assigned a density between 0 and 1. 
The element density xe determines the Young's modulus Ee as follows: 

= +E x E x E E x( ) ( ), [0, 1]e e e
p

emin 0 min (1) 

where E0 is the elastic modulus of the material assigned to the solid 
element whose density is 1, Emin is a very small elastic modulus as-
signed to the void element whose density is 0 for the purpose of pre-
venting the stiffness matrix becoming singular, and p is a penalization 
factor (typically p = 3) introduced to push element density toward 0 or 
1. 

The classical minimum compliance problem of the topology opti-
mization can be written as follows: 
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where x = (x1,x2,x3,…, xN)T is the design variable vector; c is the 
structural compliance. U is the global displacement vector; F is the 
global force vector; K is the global stiffness matrix; N is the number of 
the elements; ue is the element displacement vector; ke is the element 
stiffness matrix with unit Young's modulus; V(x) and V0 are the material 
volume and design volume, and f is the prescribed volume fraction. 

To solve the optimization problem proposed above, the OC method 
is utilized, which is a heuristic scheme and can be written as follows: 
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where m is a positive move limit, η is a numerical damping coefficient 
(typically η =1/2), and Be is obtained from the optimality condition as: 

=Be

c
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e

e (4) 

where λ is the Lagrangian multiplier introduced to satisfy the volume 
constraint, which can be found by means of a bisection algorithm. 

The sensitivities of the objective function and the material volume V 
with respect to the element density xe are: 

= u k uc
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e
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=V
x
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To overcome the numerical problems including checkboard, mesh-de-
pendences and local minima in the topology optimization, the sensi-
tivity filter is adopted in this work, and more details about filter 
methods can be referred to [45]. 

2.2. Finite element analysis 

This section discusses the basic knowledge about FEA especially the 
assembly of the global stiffness matrix for the purpose of a better un-
derstanding to the DOF reduction presented in Section 3.1. 

In FEA, the stiffness matrix ke for the e-th element is proportional to 
the Young's modulus Ee and can be deduced by the Eq. (1). When the 
stiffness matrix for each element is known, and the problem to be 
solved is to assemble the global stiffness matrix. As mentioned in  
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Section 2.1, the design domain is discretized into finite elements. Take 
the linear rectangular element as an example to discuss the assembly of 
the global stiffness matrix. Every rectangular element has four nodes 
with eight DOFs. Each node is identified by node ID and each DOF has 
its index (DOF index). As shown in Fig. 1, for the e-th element, the local 
node IDs are 1, 2, 3 and 4, and the global node IDs are assumed to be a, 
b, c and d. The local DOF indices and the global DOF indices corre-
sponding to the node IDs are shown in Table 1. 

To convert the stiffness matrix from the local DOF indices to the 
global DOF indices, a transfer matrix should be introduced. For the e-th 
element, the form of transfer matrix Ge is expressed as follows: 

… … …

=

… … …
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… … …
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… … …
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G

1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

1
2
3
4
5
6
7
8

e

(7) 

Where n is the number of nodes and Ge is an 8  ×  2n matrix consisting 
of only 0 or 1 elements. According to the correspondence between the 
local DOF indices and the global DOF indices, the positions of 1 or 0 
elements in the transfer matrix can be found. As shown in Table 1, the 
local DOF index 1 corresponds to the global DOF index 2b-1, 2 corre-
sponds to 2b, 3 corresponds to 2c-1, 4 corresponds to 2c and in the same 
way, the last is 8 corresponds to 2a. The row 1 and column 2b-1, row 2 
and column 2b, row 3 and column 2c-1, row 4 and column 2c and so on 
are exactly the positions of 1 elements in the transfer matrix. Except 
that the elements on the eight positions are equal to 1, all elements in 
the transfer matrix are equal to 0. The element stiffness matrix ke in the 
global DOF indices is expressed as: 
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The global stiffness matrix K is: 

=
=

K k
e

N

e1 (9)  

The final task of FEA is solving the equations to get the nodal dis-
placements. 

=KU F (10)  

3. Acceleration methods 

This paper proposes two acceleration schemes to improve the effi-
ciency of the topology optimization. One is the DOF reduction of the 
finite element equations, and the other is the convergence acceleration 
during the iterative process. 

3.1. The DOF reduction of the finite element equations 

3.1.1. The DOF reduction based on empty elements 
In the topology optimization of geometrically nonlinear structures, 

Buhl et al. [46] found that displacements in the nodes surrounded by 
empty elements kept oscillating and proposed to remove such nodes in 
the convergence criterion of the Newton-Raphson iterations to cir-
cumvent the nonconvergence of iterations. In our work, what is dif-
ferent from the above-mentioned work is that we found that displace-
ments in the nodes surrounded by empty elements have negligible 
influence on the process of topology optimization in linear structures 
and proposed to remove the DOFs of such nodes to improve the effi-
ciency of FEA. 

The traditional methods to solve the finite element equations con-
sider all DOFs of the structure. As the topology optimization models are 
becoming more and more complex with increasing DOFs, the solution 
of the finite element equations is time-consuming. In fact, the DOFs can 
be reduced to improve the solving efficiency, i.e., some DOFs can be 
removed for solving the finite element equations. 

The key issue is to determine which DOFs are not necessary in the 
solution. Take the 2D problem as an example, the design domain is 
discretized into 12 rectangular elements with 20 nodes and 40 DOFs as 
shown in Fig. 2. 

In Fig. 2, the numbers in the center of the rectangle are the element 
IDs, next to the nodes are the node IDs, and in the brackets are the DOF 
indices. The finite element equations of the design domain can be ex-
pressed as: 

=

K K K K
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1,1 1,2 1,39 1,40

2,1 2,2 2,39 2,40
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1

2

39

40 (11)  

Fig. 1. The local node IDs and the global node IDs for the e-th element.  

Table 1 
The local DOF indices and the global DOF indices corresponding to the node IDs      

Local node IDs Local DOF indices Global node IDs Global DOF indices  

1 1, 2 b 2b-1, 2b 
2 3, 4 c 2c-1, 2c 
3 5, 6 d 2d-1, 2d 
4 7, 8 a 2a-1, 2a    
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The subscripts of Ki,j,  Ui, Fi (i, j=1, 2, 3, …, 39, 40) represent the i- 
th row and j-th column element in the global stiffness matrix K, the i-th 
element in the displacement vector U and the i-th element in the force 
vector F, respectively. For the topology optimization based on SIMP, the 
element density will be updated toward 0 or 1 as the iterations per-
forming. Assuming that the densities of elements 2, 3, 5 and 6 are 
updated to 0 after one iteration as the white elements show in Fig. 3. 

Ignoring the very small elastic modulus assigned to the empty ele-
ments, the element stiffness matrices of the elements 2, 3, 5 and 6 can 
be regarded as zero matrices. From Eqs. (8) and (9), i.e. the assembly 
process of the global stiffness matrix, it can be deduced that all ele-
ments in 13-th, 14-th rows and columns of the global stiffness matrix 
are equal to 0. It should be noted that for the boundary nodal DOF 
indices 5, 6, 7, 8, 15 and 16, all elements in their corresponding rows 
and columns of the global stiffness matrix are also equal to 0. The 
general situation is that if a node is surrounded by the empty elements 
like the red nodes shown in Fig. 3, the rows and columns of the global 
stiffness matrix corresponding to the DOF indices of the node should be 
equal to 0. Now just consider the 13-th, 14-th rows and columns of the 
global stiffness matrix, Eq. (11) can be written as: 

=U
U

F
F

0 0
0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0
0 0

13

14

13

14

(12)  

We can remove 13-th, 14-th rows and columns of the global stiffness 
matrix, the corresponding displacements and forces in the displacement 
vector and the force vector. After this operation, new finite element 
equations with fewer DOFs are formed. The displacements solved by the 
new equations are the same as that solved by the original equations. 
The problem that comes with the operation is that the values of U13, U14 

are unknown. According to Eq. (5), the sensitivities of the elements 2, 3, 
5 and 6 are equal to 0 regardless of the values of nodal displacements. 
That means U13, U14 do not affect the values of sensitivities of the 
elements, and therefore do not affect the update of the design variables. 
Therefore, the unknown U13, U14 will not influence on the optimization 
results. In the same way, U5, U6, U7, U8, U15 and U16 can also get rid of 
being calculated. During the iteration progress, more elements become 
empty means that more DOFs can be reduced. 

The key problem of the method is how to find out all nodes sur-
rounded by empty elements. To solve the problem, the nodal density is 
introduced. Fig. 4 shows the relationship between the element density 
and the nodal density. For each element, the element density is divided 
into 4 identical densities, which are assigned to the four nodes on the 
element, e.g., the density of element 1 is divided into 4 identical den-
sities which are assigned to the nodes 1, 2, 5 and 6. If a node is shared 
by multiple elements, the nodal density is equal to average density of 
the shared elements, e.g., nodal density of node 2 is equal to the 
average density of elements 1 and 2, nodal density of 6 is equal to the 
average density of elements 1, 2, 4 and 5. 

The mapping relationship between nodes and elements of the 6 

Fig. 2. The design domain is discretized into 12 rectangular elements with 20 nodes and 40 DOFs.  

Fig. 3. The densities of elements 2, 3, 5 and 6 are updated to 0 after one iteration.  
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elements in Fig. 4 is formulated as follows: 

=

=

node IDs

1 2 5 6
2 3 6 7
3 4 7 8
5 6 9 10
6 7 10 11
7 8 11 12

element 1
element 2
element 3
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element IDs

1 0 0 0
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1 2 4 5

6 0 0 0

node 1
node 2
node 3
node 4
node 5
node 6

node 12 (13)  

In this way, the nodal density for each node can be obtained. The 
DOFs corresponding to the nodes with 0 nodal density are what we 
need to find, which can be removed to improve the efficiency of the 
finite element equation solution. 

3.1.2. DOF reduction based on the displacement change 
Section 3.1.1 discussed the DOF reduction based on the empty 

elements. Some specific DOFs can be reduced to improve the efficiency 
of the finite element equation solution. This section discusses the DOF 
reduction based on the displacement change which further reduces the 
DOFs of the finite element equations. 

Fig. 5 shows the curves of several displacement changes with the 
iteration number, which is tested by the MBB beam using the top88 
code [23] in the case of 100  ×  50 elements. 

It can be seen from Fig. 5 that the displacements are approximate 

equal in the late stage of the topology optimization. Inspired by this 
phenomenon, it is supposed that some displacements do not need to be 
calculated if the displacements have very little change after a certain 
number of iterations, and therefore the DOFs can be further reduced. 

If a certain displacement dose not change after a certain number of 
iterations, how to reduce the DOFs of the finite element equations is the 
key issue. Giving a global stiffness matrix as an 8 × 8 matrix for an 
example and the equations can be written as: 

=

×

K K K K
K K K K
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1

2
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Where the displacement U2 is assumed to be almost unchanged, 
then the equations can be transformed as follows: 

=

×

K K K K
K K K K

K K K K
K K K K

U
U

U
U

F K U
F K U

F K U
F K U

1,1 1,3 1,7 1,8

3,1 3,3 3,7 3,8

7,1 7,3 7,7 7,8

8,1 8,3 8,7 8,8 7 7

1

3

7

8

1 1,2 2

3 3,2 2

7 7,2 2

8 8,2 2 (15) 

where the 2-nd row and column of the global stiffness matrix and 2-nd 
row of the displacement vector and force vector have been removed. In 
order to ensure the displacements solved by the new equations are the 
same as that solve by the original equations, according to the matrix 
multiplication rules, the force vector should subtract the product of the 
vector in the 2-nd column of the stiffness matrix and U2. Thus, new 
finite element equations with one DOF reduced is generated. In this 
way, more DOFs can be reduced if more displacements are unchanged 
after a certain number of iterations. 

To find out the displacements that are unchanged. The following 
formula is utilized to describe the magnitude of displacement change 
quantitatively. 

=
=

+ +

=
+

dis ch
U U

U
_

( )
M

i
k i k M i

i

M
k i

1
( 1) ( 1)

1
( 1)

(16) 

where dis ch_ represents the displacement change, k is the current 
iteration number, U(k) represents the displacement at the k-th iteration, 
and M is an integer set to 5 in this work. Then whether a displacement is 
almost unchanged or not can be decided by the following criterion: if 
dis ch_ is less than a small threshold ε, the displacement is considered as 
unchanged. 

For the reason that the small-change displacements are considered 
constant in the next iteration, this method introduces errors while 

Fig. 4. The relationship between element density and nodal density.  

Fig. 5. The curves of several displacement changes with iteration number.  
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reducing the DOFs. As the iteration progresses, the errors may be very 
large that have great influence on the final optimized result. To control 
the error within an acceptable range, the following formula is adopted 
to quantify it. 

=err K U F
F

* * *
*

2

2 (17) 

Where err represents the error, K*,  F* are the reduced global stiffness 
matrix and force vector, U* is the solution solved by the new equations. 
In general, K*U* is not totally equal to F*. If err is bigger than a tol-
erance tol, the DOFs will not be reduced to ensure the error is always 
smaller than the tolerance. 

3.2. Convergence acceleration 

In this section, two accelerated schemes are proposed to improve 
the convergence: one is based on reducing design variables, and the 
other is based on gray-scale suppression. The efficiency will be com-
pared in the numerical examples presented in Section 5. 

3.2.1. Convergence acceleration based on reducing design variables 
Inspired by the research of [34,38,47], a variable-reduction scheme 

is proposed to accelerate convergence based on the convergence cri-
terion that the maximum difference of all element densities between 
two successive iterations are less than 0.01. 

Fig. 6 shows the curves of some random-select element density 
changes with iteration number in two different cases tested by the MBB 
beam using the top88 code. It can be seen that some element densities 
keep stable around 0 or 1. Therefore, it's not necessary to update these 
design variables. 

A criterion to determine whether an element density needs to be 
updated is shown as follows: 

<
>

+ +

+ +
x x x x

x x x x
max( , , , , ) 0.01
or min( , , , , ) 0.99

k k k Z k Z

k k k Z k Z

( ) ( 1) ( 2) ( 1)

( ) ( 1) ( 2) ( 1) (18) 

where k is the current iteration number, x(k) represent the density at the 
k-th iteration, and Z is an integer set to 5 in this work. If the density of 
an element has a maximum value less than 0.01 or a minimum value 
greater than 0.99 for Z successive iterations, this element density will 
not be updated. For the densities that are not updated, they will be 
assigned to 0 for less than 0.01 or to 1 for greater than 0.99. To guar-
antee the accuracy of the optimization results, the variable-reduction 
scheme is not adopted in the early stage of topology optimization for 
the reason that some densities may evolve toward intermediate value 
from 0 or 1 instead of keeping stable around 0 or 1 as the curves of 
element IDs 978 and 2001 show in Fig. 6(b). 

The relative variation of the objective function value is utilized to 
determine whether it is in the early stage of the topology optimization, 
the calculation formula can be expressed as follows: 

=
=

+ +

=
+

obj ch
c c

c
_

( )
X

i
k i k i

i

X
k i

1
( 1) ( X 1)

1
( 1)

(19) 

where obj ch_ represents the objective change, k is the current iteration 
number, c(k) represent the k-th iteration compliance, and X is an integer 
set to 5 in this work. If obj ch_ is bigger than a threshold δ, the current 
stage is regarded as the early stage of the topology optimization. The 
design variables can start to be reduced when obj ch_ is smaller than δ. 
Different values of δ will have different effects on the optimized result, 
which will be discussed in Section 4.3. 

3.2.1. Convergence acceleration based on gray-scale suppression 
Fig. 7 shows the density distribution of the final structure of the 

MBB beam optimized by the top88 code in the case of 100  ×  50 
elements. Although the OC method push the intermediate densities 
toward 0 or 1, there are still many intermediate densities in the final 
optimized result as shown in Fig. 7. The convergence becomes very 
slow because some intermediate densities cannot approximately equal 
to 0 or 1 in a stable way. 

According to this phenomenon, we use a function to continuously 
push the intermediate density towards 0 or 1 after being updated by 
OC. This function is shown in Eq. (20) which is obtained by moving the 
well-known sigmoid function 0.5 units in the positive direction of x-axis 
as shown in Fig. 8. 

=
+

x
e

1
1 a xnew ( 0.5)new (20) 

where xnew is the density updated by OC given by Eq. (3), xnew is the 
final updated density, a is an parameter determining the degree of the 
push. The function curves with different values of a is shown in Fig. 9. 

It should be noted that the parameter a is changeable during the 
topology optimization progress. In this work, a adopts an inverse pro-
portional function: 

=a t
obj ch_ (21) 

where t is a constant. During the topology optimization progress, the 
objective change obj ch_ gradually decrease, a gradually increase, and 
the degree of pushing gradually increase to accelerate the convergence 
as much as possible. If t is too small, the high efficiency of the con-
vergence acceleration cannot be fully obtained. If t is too large, the 
accuracy of the optimized results may be influenced. In this work, we 

Fig. 6. Element density changes with iteration number. (a) the case of 60 × 30 elements, (b) the case of 100 × 50 elements.  
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set t to 0.6. The function should not be used in the early stage of the 
topology optimization since the structure of the topology optimization 
in the early stage is not stable. The identification of the early stage can 
be referred to the Eq. (19). 

Fig. 7. The density distribution of the final structure of the MBB beam.  

Fig. 8. The relationship between the sigmoid function and Eq. (20).  

Fig. 9. The function curves with different parameters a.  

Table 2 
Algorithm 1   

Algorithm 1 DOF reduction based on the empty elements and the displacement 
change  

1 Given the displacement change threshold ε, the error tolerance tol  
2 Initialize the error err to 0  
3 Calculate nodal densities  
4 Find out node IDs with 0 nodal density  
5 Calculate the DOF indices for the node IDs with 0 nodal density  
6 Reduce the DOFs according to the DOF indices  
7 if err< tol then  
8 Calculate the displacement change dis ch_ by Eq. (16)  
9 Find the indices of the displacements whose changes are less than ε  

10 Reduce the DOFs according to the indices of the displacements  
11 Solve the reduced equations for unknown U  
12 Calculate err by Eq. (17)  
13 else  
14 Solve the equations formed in step 6 for U  
15 end if  
16 Return U 

Table 3 
Algorithm 2     

Algorithm 2 Convergence acceleration based on reducing design variables  
1 Given the objective change threshold δ  
2 Calculate objective change obj ch_ by Eq. (19)  
3 if obj ch_ < δ  
4 Find the densities that are less than 0.01 or bigger than 0.99 for 5 successive 

iterations and assign 0 or 1 to them.  
5 Reduce the design variables according to the found densities.  
6 Update the reduced design variables with OC  
7 else  
8 Update all design variables with OC  
9 end if  

10 Return the design variables 

Table 4 
Algorithm 3   

Algorithm 3 Convergence acceleration based on gray-scale suppression  
1 Given the objective change threshold δ  
2 Calculate objective change obj ch_ by Eq. (19)  
3 if obj ch_ < δ  
4 Update design variables with OC to get xnew  

5 Calculate xnew by Eq. (20)  
6 else  
7 Update design variables with OC  
8 end if  
9 Return design variables    
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It can be seen from Fig. 9 that the intermediate densities updated 
with the gray-scale suppression method will continue to be pushed 
toward 0 or 1, which accelerate the polarization of design variables. 
The densities of design variables are stably polarized, and therefore the 
convergence speed will be greatly improved. 

4. Algorithm implementation 

4.1. Algorithm implementation for DOF reduction 

Section 3.1 discussed two different methods to reduce the DOFs of 
the finite element equations: one is based on the empty elements, and 
the other is based on the displacement change. In this work, the two 
methods are integrated to further reduce the DOFs. The algorithm im-
plementation is explained in Algorithm 1 (see Table 2). 

4.2. Algorithm implementation for convergence acceleration 

Two schemes to accelerate the convergence have been proposed in  
Section 3.2: one is reducing design variables, and the other is gray-scale 
suppression. The algorithm implementation of the two schemes are 
shown in Algorithm 2 (see Table 3) and Algorithm 3 (see Table 4), 
respectively. 

4.3. The whole acceleration algorithm implementation 

This section discusses the algorithm implementation of the combi-
nation of DOF reduction and convergence acceleration. In this work, 
during the early iterations, the gray-scale suppression and DOF reduc-
tion based on displacement change are not adopted since Eqs. (16), (18) 
and (19) require information from previous iterations. The number of 
the early iterations is symbolized as P, and then the flowchart of the 
whole program is shown in Fig. 10. The process of Algorithm 4 men-
tioned in Fig. 10 is shown in Table 5. 

5. Numerical examples 

In this section, three different numerical examples, i.e. MBB beam, 
3D cantilever beam and compliant mechanism, will be presented to 
demonstrate the high computational efficiency of the acceleration al-
gorithm proposed above. 

In Section 5.1, MBB beam is presented to demonstrate the compu-
tational efficiency of the acceleration algorithm from its two ac-
celerated aspects: DOF reduction and convergence acceleration. The 
proposed method is compared with the efficient top88 code. In  
Section 5.2, a 3D cantilever beam will be shown to demonstrate the 
high efficiency for 3D cases and study the specific effects of the ob-
jective change threshold δ on the acceleration algorithm. Finally, in  
Section 5.3, the compliant mechanism synthesis example will be shown 
to further prove the availability and high computational efficiency of 
the acceleration algorithm. 

5.1. MBB beam 

The MBB beam is the representative example in the topology opti-
mization [23,44,45]. Taking advantage of structural symmetry and 

Fig. 10. The flowchart of the whole algorithm  

Table 5 
Algorithm 4   

Algorithm 4 DOF reduction based on the empty elements  
1 Calculate the nodal densities  
2 Find out the node IDs with 0 nodal density  
3 Calculate the DOF indices for the node IDs with 0 nodal density  
4 Reduce the DOFs according to the DOF indices  
5 Solve the reduced equations  
6 Return U    

Fig. 11. The external load, design domain and boundary conditions of the half 
MBB beam example. 
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considering only half the MBB beam, the external load, design domain 
and boundary conditions are shown in Fig. 11. This example aims to 
study the efficiency of DOF reduction, convergence acceleration and the 
whole acceleration algorithm. 

5.1.1. DOF reduction 
In this example, for the solution time of the finite element equations 

per iteration, the DOF reduction is compared with the efficient top88 
code on different meshes. The parameters of the DOF reduction are set 
as follows: the error tolerance tol= 0.1 and displacement change 
threshold ε = 0.001. The volume fraction of the MBB beam is set to 0.5, 
and the design domain of the MBB beam is discretized into three 

different sizes: 100  ×  50, 200  ×  100 and 300  ×  150 elements.  
Fig. 12 shows the solution time comparison between DOF reduction 
method and the top88 code on the three different meshes. As expected, 
due to the DOF reduction of the finite element equations, the solution 

Fig. 12. Solution time comparison between top88 and DOF reduction on dif-
ferent meshes. (a) mesh with 100 × 50. (b) mesh with 200 × 100. (c) mesh 
with 300 × 150. 

Fig. 13. Total time comparison between top88 and DOF reduction on different 
meshes. (a) mesh with 100 × 50. (b) mesh with 200 × 100. (c) mesh with 
300 × 150. 

Table 6 
Iteration number and compliance comparison between top88 and the two 
schemes on different meshes.         

Case Iteration number Compliance 
Top 88 Scheme 1 Scheme 2 Top 88 Scheme 1 Scheme 2 

100  ×  50 283 54 36 78.89 79.70 76.95 
200  ×  100 353 67 38 79.40 80.08 79.05 
300  ×  150 352 82 42 80.88 81.51 81.05 
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time of each iteration using DOF reduction method is less than that of 
the top88 code, which demonstrates the DOF reduction can effectively 
accelerate the solution time of the finite element equations. It can be 
also found from Fig. 12 that as the mesh scale increases, the solution 
time difference between the DOF reduction and top88 is larger, which 
implies the DOF reduction method has advantage in large-scale pro-
blems. 

For the pre-processing for FEA, what is different between DOF re-
duction and top88 is that the DOF reduction requires some additional 
operations including calculating nodal densities, finding the “void” 
nodes, calculating displacement change, finding the small-change dis-
placements and so on. For a fair comparison, we also test the total time 
for FEA (i.e., the sum of the solution time of FEA and the pre-processing 
time for FEA) and the result is shown in Fig. 13. It can be seen from  
Fig. 13 that the pre-processing of DOF reduction is not time-consuming 
compared to the pre-processing of top88. The efficiency of FEA is still 
improved considering the pre-processing time for FEA. 

5.1.2. Convergence acceleration 
The number of iterations is a key factor determining the total time 

of the topology optimization. This section compares the iteration 
number of top88 with that of the convergence acceleration methods 
under the same convergence criteria: the maximum difference of all 
element densities between two successive iterations is less than 0.01. 

In Section 4.2, two schemes have been proposed to accelerate the 
convergence, one is reducing design variables, and the other is gray- 
scale suppression. For the sake of convenience, reducing design vari-
ables is called Scheme 1 and gray-scale suppression is called Scheme 2. 
The number of iterations and the compliance of the two schemes will be 

also compared to evaluate their respective efficiency and accuracy. The 
parameters required for Scheme 1 and Scheme 2 mentioned in algo-
rithm 2 and algorithm 3 in Section 4.2 are set as follows: the objective 
change threshold δ = 0.005 and =a obj ch0.6/ _ . The volume fraction is 
set to 0.5, and the design domain is discretized into three different mesh 

Fig. 14. The final optimized structures of top88 and the acceleration algorithm 
on different meshes. (a), (c) and (e) top88 with 100 × 50, 200 × 100 and 300  
× 150 elements respectively. (b), (d) and (f) the acceleration algorithm with 

100 × 50, 200 × 100 and 300 × 150 elements erespectively. 

Table 7 
Efficiency comparison between top88 and the acceleration algorithm       

Case Compliance Top88 (acceleration) Iteration number Top88 (acceleration) Computational time (s) Top88 (acceleration) Speedup
timeTop88

timeacceleration
100 × 50 78.89 (76.94) 283 (35) 63.8 (10.4) 6.1 
200 × 100 79.40 (79.01) 353 (40) 215.6 (46.2) 4.7 
300 × 150 80.88 (80.95) 361 (42) 1003.4 (74.2) 13.5 

Fig. 15. The external load, design domain and boundary conditions of the 3D 
cantilever beam. 

Fig. 16. The final optimized structures of top3d and the acceleration algorithm 
on different meshes. (a), (c) and (e) top3d with 60 × 20 × 4, 
70 × 3 × 5 and 80 × 40 × 6 elements respectively. (b), (d) and (f) the ac-
celeration algorithm with 60 × 20 × 4, 70 × 3 × 5 and 80 × 40 × 6 elements 
respectively. 
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sizes: 100  ×  50, 200  ×  100 and 300  ×  150 elements. 
Table 6 shows the comparison of iteration numbers and the com-

pliance between top88 and the two schemes. From Table 6, it can be 
seen that the number of iterations required for convergence is greatly 
reduced for both Scheme 1 and Scheme 2, which demonstrates the re-
duction of design variables and the gray-scale suppression can greatly 
accelerate the convergence. It can be also found that the number of 
iterations of Scheme 2 is fewer than that of Scheme 1 for all the three 
different cases. The reason for the above is that some intermediate 
densities have not been reduced and are not very stable in the method 
of reducing design variables, which affect the convergence. By further 

studying the comparison of the compliance of top88 and the two 
schemes, we can find that the compliance of Scheme 1 is slightly larger 
than that of top88, exceeded percentage ranging from 0.78% to 1.03%, 
while the compliance of Scheme 2 is smaller than that of top88 in the 
first two cases, which means the optimized structure is more accurate 
since the polarization of density reduces the gray elements. It can be 
also found that the compliance of Scheme 2 is slightly larger than that 
of top88 in the third case, exceeded percentage is 0.21%. In practice, 
the error is very small that can be ignored. 

In summary, both Scheme 1 and Scheme 2 can accelerate the con-
vergence and obtain small-error compliance. Scheme 1 can reduce some 

Table 8 
Efficiency comparison between top 3d and the acceleration algorithm.       

Case Compliance Top3d (acceleration) Iteration number Top3d (acceleration) Computation time (s) Top3d (acceleration) Speedup
timeTop3d

timeacceleration
60 × 20 × 4 2417.67 (1718.86) 151 (46) 396.2 (76.6) 5.2 
70 × 30 × 5 1390.77 (1086.64) 346 (46) 2308.7 (313.1) 7.4 
80 × 40 × 6 1038.12 (864.14) 260 (47) 3403.4 (546.9) 6.2 

Fig. 17. The comparison of density distribution and the value of S between top3d and the acceleration algorithm. (a) top3d. (b) acceleration algorithm.  

Table 9 
The results of topology optimization with different δ          

Parameter δ 0.001 0.005 0.01 0.05 0.1 0.5 1 
Iteration number 47 45 41 36 33 29 19 
Compliance 1715.50 1718.86 1715.79 1718.50 1720.50 1883.53 1999.35 
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design variables and therefore the time for updating the design vari-
ables is reduced. Scheme 2 can obtain more accurate compliance with 
fewer iterations compared to Scheme 1. In the subsequent numerical 

examples, Scheme 2 is adopted to test the efficiency of the acceleration 
algorithm. 

5.1.3. Acceleration algorithm 
In this section, we will study the efficiency of the acceleration al-

gorithm which combines DOF reduction and convergence acceleration. 
The parameters required for the acceleration algorithm are the same as 
that in Section 5.1.1 and Section 5.1.2. The parameter P not mentioned 
above is set to 10. The design domain is discretized into 100 × 50, 
200 × 100 and 300 × 150 elements. Fig. 14 shows the final optimized 
structures of top88 and the acceleration algorithm on the three different 
meshes. From Fig. 14, it can be seen that the final structures optimized 
by the acceleration algorithm are almost the same as that optimized by 
top88, which demonstrates the final structure optimized by the accel-
eration algorithm is credible. Due to the polarization of the inter-
mediate densities, the structure optimized by the acceleration algo-
rithm has almost no gray elements and the boundary looks clearer. 

Table 7 presents the efficiency comparison between top88 and the 
acceleration algorithm. Due to the usage of DOF reduction and con-
vergence acceleration, the total computational time of the acceleration 
algorithm is greatly reduced and the speedup value ranges from 4.7 to 
13.5, which demonstrates the high efficiency of the acceleration algo-
rithm. The compliance of the acceleration algorithm is smaller than that 
of top88 in the first two cases owing to the polarization of the gray 
elements. Though the compliance is slightly larger in the third case, the 
exceed percentage is only 0.09% that can be ignored. Therefore, the 
compliance obtained by the acceleration algorithm is accurate enough. 

In conclusion, the acceleration algorithm greatly improved the 
computational efficiency with obtaining accurate structure and com-
pliance, which will be further demonstrated by 3D numerical examples 
in the following sections. 

5.2. 3D cantilever beam 

The 3D cantilever beam [43] is utilized as an example to study the 
computational efficiency of the acceleration algorithm in 3D topology 
optimization. Fig. 15 presents the external load, design domain and 
boundary conditions of the 3D cantilever. 

The classic top3d code [43] for the 3D topology optimization is used 
to compare with the acceleration algorithm. The parameters required 
for the acceleration algorithm in the 3D topology optimization are 
consistent with the 2D case mentioned above. The volume fraction is set 
to 0.3 and the design domain is discretized into three different meshes: 
80 × 40 × 6, 70 × 30 × 5 and 60 × 20 × 4 linear cubic elements. 

Fig. 16 shows the final optimized structures of top3d and the ac-
celeration algorithm on the three different meshes and Table 8 presents 
the efficiency comparison between top3d and the acceleration algo-
rithm. The computation time of the acceleration algorithm is still much 
less than that of top3d and the compliance is also smaller than that of 
top3d, which indicates that the acceleration algorithm is still highly 
efficient and can obtain accurate compliance for the 3D case. In MBB 
beam, the compliance of the acceleration algorithm is just slightly 
smaller than that of top88, while Table 8 shows that the compliance of 
the acceleration algorithm is much smaller than that of top3d. It can be 
roughly seen from Fig. 16 that there are many gray elements existing in 
the structure optimized by top3d, while the structure optimized by the 
acceleration algorithm is black and white. Owing to the existence of 

Fig. 18. The external load, design domain and boundary conditions of the 3D 
force inverter problem. 

Fig. 19. The final optimized structures of topcm and the acceleration algorithm 
on different meshes. (a), (c) and (e) topcm with 30 × 15 × 4, 
40 × 20 × 5 and 50 × 25 × 6 elements respectively. (b), (d) and (f) the 
acceleration algorithm with 30 × 15 × 4, 40 × 20 × 5 and 50 × 25 × 6 
elements respectively. 

Table 10 
Efficiency comparison between topcm and the acceleration algorithm.       

Case Displacement Topcm (acceleration) Iteration number Topcm (acceleration) Computation time (s) Topcm (acceleration) Speedup timetopcm
timeacceleration

30 × 15 × 4 -1.4905 (-1.6843) 305 (52) 112.8 (24.5) 4.6 
40 × 20 × 5 -1.6466 (-1.7364) 270 (57) 536.7 (155.4) 3.4 
50 × 25 × 6 -1.7495 (-1.7443) >400 (39) 1977.5 (204.8) 9.8 
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many gray elements, the material is not fully utilized, and therefore the 
compliance of top3d is much larger than the acceleration algorithm. A 
measure of discreteness [45] is adopted to quantitatively describe the 
degree of discreteness of an optimized structure, which is shown as 
follows: 

= ×=S
x x

N

4 (1 )
100%

N

e
e e

1
(22)  

Where S reflects the degree of discreteness. If there is no gray ele-
ment in the optimized structure, i.e., all element densities are equal to 0 
or 1, S is equal to 0. If the optimized structure is totally gray, i.e., all 
element densities are equal to 0.5, S is equal to 1. The smaller S is, the 
more an optimized structure tends to a discrete solution. The clear 
comparison of the density distribution and the value of S between top3d 
and the acceleration algorithm in the case 60  ×  20  ×  4 is shown in  
Fig. 17. From Fig. 17(a), it can be seen that the proportion of the in-
termediate density is about 80% and S = 26.8%, while in Fig. 17(b), 
S = 0.0017%, i.e., there is almost no intermediate density in the 
structure optimized by the acceleration algorithm and the structure has 
converged to a discrete solution. We also calculate the value of S with 
the density distribution in Fig. 7, and the result is S = 11.1%. Com-
pared to S = 26.8% in the 3D case, S = 11.1% is relatively small in the 
2D case. That is why there is a large compliance gap between top3d and 
the acceleration algorithm compared to the slight gap in the 2D case. 
From this perspective, the compliance of top3d is actually not accurate 
enough and the acceleration algorithm has a great advantage in ob-
taining accurate compliance and getting a discrete solution. 

Section 3.2.2 has mentioned that the gray-scale suppression should 
not applied in the early stage of the topology optimization since the 
structure is not very stable at that stage. The formula Eq.(19) is applied 
to judge whether it is in the early stage and objective change threshold 
δ is the key parameter of the formula. Now we discuss how the choice of 
parameterδ affects the results of the topology optimization. The case 
60  ×  20  ×  4 is chosen as the study object. Table 9 shows the dif-
ferent iteration number and compliance with different δ. It can be 
roughly seen that as the parameter δ increases, the number of iterations 
decreases, but the compliance increases, which means the optimized 
structure may not be accurate. Consider that the compliance of top3d is 
2417.67, which is still larger than 1999.35 when δ=1, so if we don't 
pursue very precise result, we can appropriately increase δ to obtain 
fewer iterations. 

5.3. Compliant mechanism synthesis 

This section uses a 3D force inverter problem [43] as an example to 
verify the efficiency of the acceleration algorithm. The code introduced 
in [43] is adopted to compare with the acceleration algorithm. To 
distinguish it from the previous top3d code, this code is named topcm 
here. The objective function of this problem is to maximize the negative 
horizontal output displacement with an input external load in the po-
sitive direction as shown in Fig. 18. 

The volume fraction is set to 0.3 and the design domain is dis-
cretized into 30 × 15 × 4, 40 × 20 × 5 and 50 × 25 × 6 linear cubic 
elements. Fig. 19 shows the final optimized structure of topcm and the 
acceleration algorithm on the three different meshes. From Fig. 19, it 
still can be seen that the structure optimized by the acceleration algo-
rithm is credible with almost no gray elements and clear boundary. 

Table 10 presents the efficiency comparison between topcm and the 
acceleration algorithm. Note that in the case 50 × 25 × 6, the number 

of iterations of topcm is more than 400, i.e., after 400 iterations, topcm 
still does not satisfy the convergence criterion and the displacement and 
computational time in the Table 10 is the value at the 400-th iteration. 

From Table 10, the conclusion can be drawn that for the compliant 
mechanism problem, the acceleration algorithm still have quite good 
performance, which obtains accurate results with greatly reduced time. 
In the case 50 × 25 × 6, the number of iterations of topcm is over 400, 
which implies the topcm may converge slowly in dealing with the 
compliant mechanism problem. It can be verified from Table 11 that it 
is really hard for topcm to converge in different cases. For some pro-
blems that are difficult to converge, it is a great choice to use the ac-
celeration algorithm. 

6. Conclusion 

This paper has proposed an acceleration algorithm for the topology 
optimization, which includes DOF reduction and convergence accel-
eration methods. DOF reduction accelerates the solution of the finite 
element equations by reducing some DOFs from the finite element 
equations. Convergence acceleration reduces the number of iterations 
by accelerating the polarization of the design variables. Three bench-
mark numerical examples: MBB beam, 3D cantilever beam and com-
pliant mechanism have been tested to verify the acceleration algorithm. 
For each example, the detailed comparison of the efficiency and the 
optimized results between the acceleration algorithm and the tradi-
tional topology optimization are given in this paper. All the examples 
have demonstrated that the acceleration algorithm greatly improves the 
computational efficiency for the topology optimization and obtains 
accurate optimized results. In addition, the acceleration algorithm has 
the advantages to get better objective value and to handle the problems 
that are hard to converge. In the future, the acceleration algorithm is 
expected to combine with GPU parallel computing [48,49] to further 
improve the efficiency of the topology optimization and apply to other 
types of topology optimization methods such as isogeometric topology 
optimization and lattice topology optimization [50,51]. 
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Table 11 
The iteration number for topcm in different cases.         

Case 20 × 10 × 4 30 × 10 × 4 30 × 15 × 4 40 × 20 × 5 50 × 25 × 6 50 × 30 × 6 
Iteration number for topcm >400 >400 305 270 >400 >400 
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