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This paper presents a novel fail-safe topology optimization method for multiscale structures. The partial
damage of both macroscopic and microscopic scales is considered for structural design. To ensure preci-
sion, the effective elasticity tensor obtained by the homogenization method is fitted as a high-order poly-
nomial function. Meanwhile, the simplified models of partially damaged truss-like microstructure are
employed to reduce the computational cost and the difficulty of fitting. Moreover, Heaviside projection
is applied to speed up the convergence and yield a relatively clear configuration. Three numerical exam-
ples are tested to demonstrate that the optimized multiscale structures successfully obtain comprehen-
sive performances than optimized solid structures when appropriate microstructure configurations are
chosen. Besides, multiscale structures are more self-supporting than solid structures and thus more suit-
able for additive manufacturing due to the large number of gray elements diffused.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Topology optimization (TO) is becoming an important method
in structural design with increasing computational power of com-
puters. Especially since the pioneering work of Bendsøe and Kiku-
chi [1], the homogenization method (HM) was adopted to achieve
continuum structural TO. Since then, many remarkable TO meth-
ods were presented. The solid isotropic material with penalization
(SIMP) as a simple and efficient method [2,3] has been widely used
in TO since it was presented. The TO based on level-set method
[4,5] which utilizes level-set function to implicitly describe the
structural geometries during TO can obtain clear topological
boundaries. The TO based on moving morphable components
(MMC) [6,7], whose number of design variables depends on the
number of components, has received extensive attention.

The traditional TO design usually seeks the optimal mechanical
properties during normal working conditions, which is easily
unstable when encounters failure due to its low redundancy. Thus,
using such a structure is very dangerous when it is subjected to
damage. In civil engineering, mechanical engineering and aero-
space engineering, the redundant design runs through the entire
design process. Sun et al. [8] applied the fail-safe concept to the
design of the truss structure. In their numerical examples, the
damage of a single truss and a group of trusses were considered
respectively, and the multi-constraint optimization problems were
solved under these conditions. Lüdeker and Kriegesmann [9]
explored the feasibility of combining damage scenarios. The result-
ing structure may be unsafe when encountering a single damage
scenario, but applying the p-norm to stress constraints can reduce
this effect. In addition, a series of articles have also investigated the
fail-safe optimization of truss structures, e.g. [10–13].

Jansen et al. [14] first extended the fail-safe concept to contin-
uum structural TO. They specified the size of the damage patch and
then applied the damage at all feasible locations. Such a design can
withstand damage from various locations, but this method brings
computational challenges. Based on this problem, Zhou and Fleury
[15] reduced the amount of damage scenarios in each iteration by
controlling the distance between every two adjacent damage areas.
And they ultimately implemented a fail-safe TO (FSTO) for a 3D
vehicle control arm model. To further reduce the computational
cost, Ambrozkiewicz and Kriegesmann [16,17] presented the stress
criterion and image processing for identifying the beams and knots
of the structures where the damage was applied. Hederberg and
Thore [18] employed the MMC to apply damage, and components
were used to erase material whose locations were determined by
the inner maximization compliance problem, which is similar to
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the approach presented by Ambrozkiewicz and Kriegesmann [17].
In Martínez-Frutos and Ortigosa [19], the probability of damage
occurrence and the uncertainty of damage patch size are taken into
account during the design process, thus a less costly design with
known risks is obtained. It is worth mentioning that the above-
mentioned failures do not take into account the gradual propaga-
tion of damage, which is a focus in other papers. More details
can be found in [20–23].

Current FSTO focus on changing the configuration of the
macrostructure to increase its robustness. Another powerful
approach to achieve it is reinforcing the strength of the material.
One effective approach is to fill the structure with microstructure
cells, i.e., to design the multiscale structures. Thus an extreme per-
formance structure can be designed, which is difficult to achieve by
solid structures [24–27]. Qiu et al. [28] compared the mechanical
properties of optimized multiscale structures and optimized solid
structures after encountering the same damage. On an equal-
mass basis, the optimized multiscale structures had lower compli-
ance and maximum stress than the solid structures. Do et al. [29]
utilized infill optimization [30] to generate the redundant struc-
ture, and then filled it with four kinds of microstructure unit cells.
By comparing the max displacement of these structures after
applying the same damage scenarios, they found that the Voronoi
cellular structure was the most robust one among them. However,
the multiscale structures mentioned above are not designed with
the concept of fail-safe. Inspired by these, this paper will imple-
ment the multiscale FSTO (MFSTO) and demonstrate the advan-
tages of such multiscale structures. The HM that is widely used
in multiscale TO [31] and microstructure design [32] will be also
adopted to calculate the equivalent properties of the
microstructures.

The remainder of this paper is as follows: Section 2 analyzes
and simplifies the partial damage of multiscale structures. Section 3
presents a FSTO problem and briefly introduces SIMP and HM, as
well as the associated mathematical model. Section 4 elaborates
on the algorithm implementation and analyzes the sensitivity of
the MFSTO. In Section 5, both 2D and 3D examples are tested to
illustrate the effectiveness of the algorithm and demonstrate the
superiority of the optimized multiscale structures. Conclusions
and future works are given in Section 6.
2. Simplified method for partial damage of multiscale
structures

Describing damage to a structure is a significant part of FSTO.
The approach of Zhou and Fleury [15] considering the damage is
representative. They first specified the size of the damage patch.
To reduce the computational cost, they divided failure set into
levels according to the number of considered failure scenarios. In
the damage set of level 1 (PA1), the damage patches fill the design
domain without overlapping. Moreover, the damage set of level 2
(PA2) can be obtained by halving the distance of adjacent damage
patches in the level 1 damage set.

The utilization of simplifying damage models can effectively
reduce computational costs. Take Fig. 1 as an example, an elliptic
damage is applied to the solid structure and the multiscale struc-
ture, respectively. The way of simplifying the damage to a solid
structure in [17,18] is shown in Fig. 1(a). After describing the dam-
age patch by the level-set function, the level-set values at the ele-
ments’ positions are substituted into the Heaviside function to
obtain their densities. The way simplifies the damage to a multi-
scale structure is quite different in this paper. Since the damaged
microstructure still has some supporting capacity under some fail-
ure modes, the damage inside the microstructure is considered in
this paper. As represented in Fig. 1(b), the entirely removed
2

element will be assigned a very low density. While the partially
damaged element will be given an intermediate density, and HM
will be applied to obtain its mechanical properties. However, since
the mechanical properties of the damaged graded material are usu-
ally complex to fit as a function of density, simplified models are
used in this paper. As shown on the right of Fig. 1(b), the truss-
like damaged microstructure is simplified via removing trusses
covered with the failure area, which is inspired by the method in
fail-safe optimization of truss structures. Meanwhile, the computa-
tional cost of pre-processing is also reduced due to the complex
damaged model can be simplified into a few specific kinds.

In the following examples, the abovementioned method will be
used to simplify damage of multiscale structure, and the damage
set division approach will be employed to reduce the computa-
tional cost.

3. FSTO problem for multiscale structures

A FSTO problem can be formulated by Eq. (1), where the design
variables are the element densities, the objective function is to
minimize the maximum compliance of all failure scenarios, and
the constraint is the volume fraction:

find :q ¼ q1;q2; :::;qnf gT
min :J qð Þ ¼ max c ið Þ qð Þ� �

i ¼ 1;2; :::;m

s:t: VðqÞ
V0

6 f 0
qmin 6 qj 6 qmax j ¼ 1;2;:::; n

8>>>><
>>>>:

ð1Þ

where q indicates the density vector; n represents the number of
elements; c ið Þ qð Þ is the structural compliance when it encounters
the ith failure scenario; JðqÞ is the objective function which is equal
to the maximum compliance for all m failure scenarios; VðqÞ and V0

represent the volume of material and the design domain, respec-
tively; f 0 is the global volume constraint.

In the gradient-based optimization algorithm, it is necessary to
obtain the sensitivity of the objective function. But the maximum
function is indifferentiable, hence, the K-S function [33] is often
used to approximate the maximum function. The objective func-
tion can be replaced by the following formula:

J
�
qð Þ ¼ 1

c
ln

Xm
i¼1

ecc
ið Þ qð Þ ð2Þ

where the larger value when c is set, the closer the value of the K-S
function is to the maximum value, but it may result in the numer-
ical unstable. According to [14], c ¼ 50=max c ið Þ qð Þ� �

i ¼ 1;2; :::;mð Þ
is a suitable choice in the algorithm.

Assuming that the structure is in the ith damage scenario, now
the nodal displacement vector is u ið Þ, and the global stiffness matrix

is K ið Þ, then the compliance of the damaged structure can be

obtained by c ið Þ qð Þ ¼ f Tu ið Þ ¼ u ið Þ� �TK ið Þu ið Þ. In finite element analy-
sis (FEA), the global stiffness matrix K is assembled from the ele-
ment stiffness matrix KE.

For solid structures, the SIMP method is usually utilized to
describe the material properties. The element stiffness matrix KE

for the element with density q can be obtained as:

KE ¼ Emin þ qp E0 � Eminð Þ½ �K0 ð3Þ
where E0 and m0 are the Young’s modulus and Poisson’s ratio of the
solid material, respectively; Emin is the Young’s modulus of the void
material; p denotes the penalization parameter to favor 0–1 solu-
tions and p ¼ 3 is a typical choice [34]; K0 is the element stiffness
matrix for an element with unit Young’s modulus.

For multiscale structures, the mechanical properties of
microstructure at the macroscopic scale can be accessed via HM.



Fig. 1. Two structures encounter elliptic damage and simplify methods for (a) damage of solid structure in [17,18] and (b) damage of multiscale structure.
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If x and y are variables on the macroscopic and microscopic scale
respectively, they satisfy the following relationship, where
0 < e � 1:

y ¼ x
e

ð4Þ

The displacement field u can be expanded by e:

u x; yð Þ ¼ u0 x; yð Þ þ eu1 x; yð Þ þ e2u2 x; yð Þ þ ::: ð5Þ
Besides, the effective elasticity tensor DH

ijkl can be calculated as:

DH
ijkl ¼

1
Yj j

Z
Y
e0pq uij

� �� epq uij
� �� �

Dpqrs e0rs uklð Þ � ers uklð Þ� �
dY ð6Þ

where Y is the design domain of the microstructure, Dpqrs is the elas-
ticity tensor of the filling material, e0pq uij

� �
is the unit test strain

field, epq uij
� �

is the strain field which can be gained from the follow-
ing formula:Z
Y
epq uij

� �
Dpqrsers vklð ÞdY ¼

Z
Y
e0pq uij

� �
Dpqrsers vklð ÞdY ;8vkl 2 U

�
Yð Þ

ð7Þ

where U
�

Yð Þ represents the admissible displacement field defined in
Y .

After each effective elasticity tensor DH
ijkl is obtained, it can be

written as a matrix DH whose sizes are 3� 3 in the 2D case and
6� 6 in the 3D case, respectively. The element stiffness matrix
KE can be obtained by the following formula:

KE ¼
Z
Y
BT
eDBedY ð8Þ

where Be denotes the strain–displacement matrix.
3

Although KE for a microstructure element can be calculated, the
HM is complex and time-consuming. Therefore, to improve the
computational cost, the effective elasticity tensor DH

ijkl is fitted to
a function of the density q, which is generally a polynomial. In this
way, the effective elastic tensor and its sensitivity can be directly
obtained.

4. Sensitivity analysis of MFSTO

Replacing the objective function in Eq. (1) with Eq. (2) turns the
optimization problem into:

find :q ¼ q1;q2; :::;qnf gT

min : J
�
qð Þ ¼ 1

c ln
Pm
i¼1

ecc
ið Þ qð Þ i ¼ 1;2; :::;m

s:t: VðqÞ
V0

6 f 0

qmin 6 qj 6 qmax j ¼ 1;2;:::; n

8>>>>>>>>><
>>>>>>>>>:

ð9Þ

This optimization problem can be solved through the method of
moving asymptotes (MMA) [35,36]. For the MMA solver, it is com-
pulsory to find the sensitivity of the objective function and the con-
straint function.

4.1. Density filter and projection

The following filter is adopted to attain smoother designs and
avoid check-board pattern [37]:

eqi ¼
Pn

h¼1wihvhqhPn
h¼1wihvh

ð10Þ

wih ¼ max 0;Rmin � k xi � xh k2
� � ð11Þ
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where eqi is the density of element i after filtering; wih is the weight
factor which is related to the distance between element i and h; vh

is the volume of element h; Rmin is the filtering radius; k xi � xh k2
represents elemental center distance.

To obtain clearer 0–1 solutions, the Heaviside step function [38]
is employed as the density projection:

q
�
i ¼ tanh bgð Þ þ tanh b eqi � gð Þð Þ

tanh bgð Þ þ tanh b 1� gð Þð Þ ð12Þ

where b is referred to the steepness parameter, which determines
the strength of the projection; g 2 0;1½ � is the projection threshold,
values higher than g will be projected to 1 and values less than g
will be projected to 0.

Their sensitivities can be obtained as:

@eqi

@qj
¼ wijv jPn

h¼1wihvh
ð13Þ

@q
�
i

@eqi
¼

b 1� tanh2 b eqi � gð Þð Þ
h i

tanh bgð Þ þ tanh b 1� gð Þð Þ ð14Þ
4.2. The description of the failure and the related sensitivity

Generally, in FSTO, assigning an element a very small density
indicates that this element is damaged. It can be expressed as:

q
� kð Þ ¼ / kð Þ�q� ð15Þ

where q
� kð Þ

is the density vector when the structure is in the kth fail-
ure scenario; / kð Þ denotes the damage mask of the kth failure sce-
nario which is a matrix with a value of 0;1½ �, where 0 and 1
denote that the element is completely removed and completely
reserved respectively, and an intermediate value means that the
element is partially removed; � represents the Hadamard product.

When the damage mask is independent of the density, for
example, the solid element encounters damage or the failure will
not change the configuration of the microstructural element, the
sensitivity does not require additional calculations:

@q
� kð Þ
i

@q
�
i

¼ / kð Þ
i ð16Þ

If damage mask is dependent of density, e.g. the configuration
of the microstructural element is changed after damage, the sensi-
tivity should be computed according to the specific failure sce-
nario. In the situation displayed in Fig. 2, it is assumed that the
truss-like element i suffers different local damages in the jth and
kth damage scenarios, respectively. Although the relative density
and elasticity matrix of the microstructure changed after failure,
Fig. 2. The truss-like microstructu

4

the rod diameter does not change, which can be used as an inter-
mediate variable to obtain the relative density after failure and
the sensitivity of the densities.

Taking the kth failure scenario as an example, if the relationship

between the relative density q
�
i of the microstructure and the rod

diameter d is q
�
i ¼ s dð Þ, and the relationship between the relative

density of the damaged microstructure q
� kð Þ
i and the rod diameter

d is q
� kð Þ
i ¼ s kð Þ dð Þ, q� kð Þ

i can be obtained by following:

q
� kð Þ
i ¼ s kð Þ s�1 q

�
i

� �� �
ð17Þ

where d ¼ s�1 q
�
i

� �
and q

�
i ¼ s dð Þ are inverse functions for each

other.
If both of them are one-dimensional functions of the rod diam-

eter d, the sensitivity of this part can be obtained by the following
formula:

@q
� kð Þ
i

@q
�
i

¼ @q
� kð Þ
i

@d
@d

@q
�
i

¼ @q
� kð Þ
i

@d
=
@q

�
i

@d
¼ s kð Þ0 dð Þ

s0 dð Þ ð18Þ

Since s dð Þ and s kð Þ dð Þ are sometimes difficult to obtain, the effective

elasticity matrix DH kð Þ
i of the damaged element can be fitted as a

function of q
�
i. Therefore @DH kð Þ

i =@q
�
i can be calculated and

@q
� kð Þ
i =@q

�
i is no longer needed at this time. But the relationship curve

obtained in this way is often not smooth and difficult to fit. Using
the simplified damage model can reduce the difficulty of calculating
s kð Þ dð Þ.

4.3. Compliance and its sensitivity

When considering the kth failure scenario, the effective elastic-

ity matrix DH kð Þ
i of element i can be obtained by the HM. Substitut-

ing D kð Þ
i into Eq. (8) to obtain the element stiffness matrix of

element i, i.e. K kð Þ
Ei , then the compliance of element i can be

obtained as:

c kð Þ
i ¼ u kð Þ

i

� �T
K kð Þ

Ei u
kð Þ
i ð19Þ

where u kð Þ
i is the displacement vector of element i. Subsequently,

the structural compliance c kð Þ can be achieved by accumulating:

c kð Þ ¼
Xn
h¼1

c kð Þ
h ð20Þ

Since the compliance of element i is independent of other ele-
ments’ densities, the partial derivative of the compliance c kð Þ with

respect to q
� kð Þ
j is formulated as:
re encounters partial failure.



Fig. 3. The flow chart of MFSTO.
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@c kð Þ

@q
� kð Þ
i

¼ @c kð Þ
i

@q
� kð Þ
i

¼ � u kð Þ
i

� �T
� @K

kð Þ
Ei

@q
� kð Þ
i

� u kð Þ
i

¼ � u kð Þ
i

� �T
�
Z
Y
BT
e
@D kð Þ

i

@q
� kð Þ
i

BedY � u kð Þ
i ð21Þ

In this paper, the effective elasticity matrix DH kð Þ
i is pre-fitted as

a function with the element density q
� kð Þ
i , so @D kð Þ

i =@q
� kð Þ
i can be

acquired, and further gives @c kð Þ=@q
� kð Þ
i . Simplifying damage of the

microstructure enables easier calculation of DH kð Þ
i , more details will

be described in Section 5.3.
For SIMP, the compliance of element i and its sensitivity are

obtained by the following two equations:
5

c kð Þ
i ¼ E q

� kð Þ
i

� 	
u kð Þ
i

� �T
K0u

kð Þ
i

¼ q
� kð Þ
i

� 	p

E0 � Eminð Þ þ Emin


 �
u kð Þ
i

� �T
K0u

kð Þ
i ð22Þ

@c kð Þ

@q
� kð Þ
i

¼ @c kð Þ
i

@q
� kð Þ
i

¼ �p q
� kð Þ
i

� 	p�1

E0 � Eminð Þ u kð Þ
i

� �T
K0u

kð Þ
i ð23Þ
4.4. Objective function, volume constraint function and their
sensitivities

After finding the compliance c kð Þ under each failure scenario, the

objective function J
�
can be derived from Eq. (2). The partial deriva-

tive of the objective function with respect to the compliance is:



Fig. 4. The fitting curves of the effective elasticity tensors relative to the effective
density for three microstructures: (a) material 1, (b) material 2 and (c) material 3.

J. Yang, H. Su, X. Li et al. Computers and Structures 284 (2023) 107069
@ J
�

@c kð Þ ¼
ecc

kð ÞPm
l¼1ecc

lð Þ ð24Þ
6

Based on the sensitivities obtained above, the partial derivative

of the objective function J
�
with respect to the density of element i

can be derived by the chain rule:

@ J
�

@qi
¼

Xm
l¼1

Xn
h¼1

@ J
�

@c lð Þ
@c lð Þ

@q
� lð Þ
h

@q
� lð Þ
h

@q
�
h

@q
�
h

@eqh

@eqh

@qi
ð25Þ

Assuming that the volume fraction is set to f 0, the volume con-
straint function is given by:

f qð Þ ¼ V qð Þ
V0

� f 0 ¼
Pn

h¼1vhq
�
hPn

h¼1vh
� f 0 6 0 ð26Þ

Similarly, the sensitivity of the corresponding constraint func-
tion can be derived by the chain rule as follows:

@f
@qi

¼
Xn
h¼1

@f

@q
�
h

@q
�
h

@eqh

@eqh

@qi
ð27Þ

where @f=@q
�
i ¼ v i=

Pn
h¼1vh can be obtained by Eq. (26).

4.5. Optimization procedure of MFSTO

The algorithm procedure of MFSTO is similar to FSTO for solid
structures, the difference lies in the additional need to deal with
microscale damage. The flow chart of MFSTO is shown in Fig. 3.
As mentioned before, the effective elasticity matrix can be fitted
as a function of the effective density to reduce the computational
cost during the iteration, and the use of the simplified models
reduces the difficulty of finding effective elasticity matrix.

5. Numerical examples

In this section, two 2D numerical examples and one 3D numer-
ical example are employed to exhibit the superiority of optimized
multiscale structures over optimized solid structures. All examples
are computed on a desktop PC with CPU AMD core Ryzen 5 5600G
of 3.90 GHz, RAM of 16 GB.

5.1. Parameters selection

For all examples, Young’s modulus of the solid material is E0 ¼ 1
and Poisson’s ratio is m0 ¼ 0:3. The penalty factor is equal to p ¼ 3
in the SIMP method. The sizes of elements are 1� 1 in 2D and
1� 1� 1 in 3D, respectively.

To compare the design results of different microstructural con-
figurations, three types of 2D microstructural unit cells are chosen
in the most 2D examples whose effective elasticity matrices are
calculated corresponding to relative densities. To ensure precision,
all 2D microstructural cells are discretized into 500� 500 quadri-
lateral linear finite elements. The damaged microstructure is usu-
ally anisotropic, and there can be up to 6 independent variables
in the effective elasticity matrix. Therefore, to describe its proper-
ties more clearly, the effective elasticity tensors are selected for the
function fitting. The fitting curves of the effective elasticity tensor
relative to the effective density q are shown in Fig. 4, where the fit-
ting functions fitted by the polynomial are listed in Table 1.

The effective elasticity matrices of the above microstructures
have the same form:

DH ¼
DH

1111 DH
1122 0

DH
1122 DH

1111 0

0 0 DH
1212

2
64

3
75 ð28Þ

The 3D example is tested in Section 5.3 where the unit cell adopted
is the ORC truss [39]. Fig. 5 shows schematic diagram of the ORC



Table 1
Effective elasticity tensor as a function of the effective density for three microstructures.

Material Fitting function (0 6 q 6 1)

DH
1111 ¼ 11:5135q6 � 28:8100q5 þ 27:7130q4 � 12:0338q3 þ 2:5087q2 þ 0:2026q
DH

1122 ¼ 7:8853q6 � 20:3870q5 þ 19:7592q4 � 8:8001q3 þ 1:8445q2 þ 0:0250q
DH
1212 ¼ 2:5097q6 � 6:1442q5 þ 5:9397q4 � 2:6068q3 þ 0:5800q2 þ 0:1056q

DH
1111 ¼ 12:1781q6 � 30:5336q5 þ 29:2735q4 � 12:6895q3 þ 2:6265q2 þ 0:2408q
DH

1122 ¼ 7:5662q6 � 19:6584q5 þ 19:2744q4 � 8:6786q3 þ 1:8455q2 � 0:0218q
DH
1212 ¼ 2:0811q6 � 5:1032q5 þ 5:1208q4 � 2:3207q3 þ 0:5444q2 þ 0:0615q

DH
1111 ¼ 2:4706q6 � 4:9539q5 þ 4:1216q4 � 1:4547q3 þ 0:4312q2 þ 0:4839q

DH
1122 ¼ �0:7415q6 þ 2:7034q5 � 2:9381q4 þ 1:4944q3 � 0:2086q2 þ 0:0206q

DH
1122 ¼ 0:6816q4 � 0:3681q3 þ 0:0714q2 � 0:0024q

Fig. 5. The fitting curves of the effective elasticity tensors relative to the effective
density for ORC truss.
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truss and the fitting curve of its effective elasticity tensors relative
to the effective density. These data are referenced to Watts et al.
[40], and the fitting functions are displayed in Table 2.

Its effective elasticity matrix has the following form:

DH ¼

DH
1111 DH

1122 DH
1122 0 0 0

DH
1122 DH

1111 DH
1122 0 0 0

DH
1122 DH

1122 DH
1111 0 0 0

0 0 0 DH
1212 0 0

0 0 0 0 DH
1212 0

0 0 0 0 0 DH
1212

2
66666666664

3
77777777775

ð29Þ
Table 2
Effective elasticity tensor as a function of the effective density for ORC truss.

Fitting function (0 6 q 6 1)

DH
1111 ¼ 1:4556q6 � 3:4481q5 þ 2:7254q4 þ 0:0071q3 þ 0:4101q2 þ 0:1961q

DH
1122 ¼�2:7183q6 þ6:3838q5 � 4:4193q4 þ 1:2435q3 � 0:0156q2 þ 0:1028q

DH
1212 ¼�1:5642q6 þ3:5514q5 � 2:6797q4 þ 0:9824q3 � 0:0027q2 þ 0:0975q
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The same convergence criterion is adopted for all numerical
examples: the iterations are stopped when the maximum change
in the design variables is less than 1% or the number of iterations
is more than 250. In Eq. (2), the value of c is updated every 10 iter-
ations or when the worst compliance changes rapidly. The filter
radius Rmin is set to 2 since a large Rmin is unconducive to generat-
ing redundant trusses.

The parameter settings of the Heaviside projection have a con-
siderable impact on the design results. To obtain better results,
Heaviside projection is also applied to the multiscale TO. Taking
material 1 in Fig. 4 and the cantilever beam model with a design
domain size of 120� 40 as an example, as the blue box shown in
Fig. 6, damage will only appear in a 100� 40 area on the left.
The damage patch is a square area of 20� 20, and the considered
failure set is level 2. The global volume constraint is configured
to 40%.

The projection threshold g is set to 0.5. Fig. 7 depicts the case
where the initial value of the steepness parameter b is 2 and the
termination value bmax are 0, 2, 4, 8, 16, and 32, respectively.
Among them, bmax ¼ 0 means that the projection is not applied.
The b value doubles every 50 iterations, the maximum number
of iterations is 300 and the rest of the parameters are the same
as above. It can be seen that if the projection is not applied or
bmax is relatively small, the worst compliance cmax and the average

compliance of all damage scenarios c
�

may be higher. This is
because the convergence speed is slow and the designs lack the
necessary supporting structure. While bmax is relatively large,

although the design is closer to the 0–1 distribution, cmax and c
�

do not always decrease, and numerical instability may occur espe-
cially when bmax is larger than 16. It seems that an appropriate
choice for bmax is 16, while the generated structure has better
safety performance along with better convergence.
5.2. Example 1

Example 1 is derived from the work of Zhou and Fleury [15]. The
boundary condition is shown in Fig. 8, with a global volume frac-
tion of 20%. Damage can be applied to the entire design domain,
but in order to prevent numerical instability, it is necessary to
avoid applying load at void elements. That is, the damage needs
to avoid the location where the load is applied. In this example,
partial damage is not considered. The damage patches are set as
6� 6 and 30� 30 square areas, respectively, and the vertices of
the damaged area coincide with the grid nodes to avoid damage
inside the microstructural unit cell.



Fig. 6. Design domain and boundary condition of a cantilever beam.

Fig. 7. Fail-safe designs and their compliances with different maximum steepness
parameters bmax.

Fig. 8. Design domain and boundary condition of example 1.
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Performing deterministic TO according to the previous parame-
ter settings, the obtained deterministic designs are shown in Fig. 9,
whose configurations are two-force bars. Here, the design based on
SIMP satisfies the convergence criterion at the 71st iteration.
Fig. 9. Deterministic designs based on (a) SIMP, (b) material 1, (c) material 2 and (d)
c ¼ 11:5835, c ¼ 11:7839 and c ¼ 11:9726, respectively.
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Lower b leads to more gray elements in SIMP design thus results
in higher compliance.

The damage set is level 2. Since the damage is applied in the
design domain except for the load point, the number of FEA to be
calculated in each iteration is 744 for the 6� 6 square damage,
and 20 for the 30� 30 square damage. The fail-safe designs of solid
structures and multiscale structures are shown in Fig. 10, and the
damage scenario that has the worst impact on structural compli-
ance is marked with a red box. The compliance without consider-
ing damage c, the worst compliance cmax and the average

compliance c
�
are recorded in Table 3.

As can be seen from Fig. 10, the designs are related to the size of
the damage patch. When the size is small, each fail-safe design
resembles its deterministic design. When the size is larger, the
designs based on solid and material 3 get clearer configurations.
This is because their mechanical properties are poor in the inter-
mediate density. While material 1 and 2 have better mechanical
properties in the intermediate density, their fail-safe designs
appear to have a large number of gray elements. In additions,
bmax ¼ 16 is not high enough to penalize designs based on material
1 and 2 into 0–1 distributions.

The small difference between the optimized designs of material
1 and material 2 indicates that the differences in the results in
Table 3 are strongly related to the configuration of the microstruc-
ture. It can be also observed that the fail-safe designed multiscale
material 3 material models for example 1,and their compliances are c ¼ 12:2151,



Fig. 10. Fail-safe designs based on (a,b) SIMP, (c,d) material 1, (e,f) material 2 and (g,h) material 3 material models for example 1, where the sizes of considering damage
patches are 6� 6 for the left and 30� 30 for the right, respectively.

Table 3
Design results corresponding to Fig. 10.

6� 6 30� 30

c cmax c
� c cmax c

�

SIMP 13.2252 21.7832 14.1393 17.3453 40.5861 35.6764
Material 1 12.5479 20.8948 13.3035 19.0950 40.9721 34.0195
Material 2 12.5135 21.0054 13.3076 20.0744 41.3213 36.2382
Material 3 12.7726 20.6886 13.5207 19.7195 41.8938 38.4607
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structure can have better mechanical properties than the solid
structure, but it is related to the configuration of the
microstructure.

Taking the fail-safe designs in Fig. 10(b)(d) as an example, their
iteration curves are plotted in Fig. 11. The steepness parameter b
doubles every 50 iterations, and the curves jump at these places.
There are more gray elements in the design based on material 1,
so more elements will be projected to 0 or 1, which causes the
jumps to be much more drastic.
9

5.3. Example 2

Example 2 is a typical cantilever beam and its structural dimen-
sion and boundary condition are shown in Fig. 6, where the global
volume constraint is set to 40%. The deterministic TO design is
shown in Fig. 12. In this example, the material 3 based design is
significantly different from the others and has higher compliance.
This means that it may encounter the local optimization. Similar
results were observed in [41].



Fig. 11. The iteration curves corresponding to the designs in (a) Fig. 10(b) and (b)
Fig. 10(d).

Fig. 12. Deterministic designs based on (a) SIMP, (b) material 1, (c) material 2 and (d)
c ¼ 203:2687, c ¼ 203:0307 and c ¼ 232:6615, respectively.

Fig. 13. Two different types of damage patches: (a) the shapes of the damage
patches are square areas with 4� 4 and 10� 10; (b) the shapes of the damage
patches are circular areas with radius R ¼ 1:3 and 4:5.
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Since microstructure elements may suffer partial damage, this
example considers two different shapes of damage patches. As
depicted in Fig. 13(a), the shape of the first type of damage patch
is still a square, whose sizes will be set to 4� 4 and 10� 10,
respectively. Partial damage of the microstructure is not consid-
ered at this moment. The shape of the second damage patch is cho-
sen to be a circle, as depicted in Fig. 13(b), the center of which is
located at the grid node while some microstructure elements will
inevitably be partially damaged. The radius of the circular areas
are fixed to R ¼ 1:3 and 4:5, respectively, corresponding that ele-
ments in the range of 4� 4 and 10� 10 have suffered damage.

Considering the damage set of level 2, for 10� 10 square dam-
age and R ¼ 4:5 circular damage, the number of FEA to be calcu-
lated in each iteration is 133; for 4� 4 square damage and
R ¼ 1:3 circular damage, this number is 931.

For the two square damages shown in Fig. 13(a), the optimized
designs and the locations of the worst damage are shown in Fig. 14.
The compliance c, the worst-case compliance cmax and the average

compliance c
�
are recorded in Table 4.

By comparison, multiscale structures based on material 1 and 2
seem to be better suited to such boundary conditions, which show
more robustness in this example. The diffuse gray elements
improve the ability of multiscale structures to withstand damage,

thus having lower cmax and c
�
.

material 3 material models for example 2,and their compliances are c ¼ 203:6308,



Fig. 14. Fail-safe designs based on (a,b) SIMP, (c,d) material 1, (e,f) material 2 and (g,h) material 3 material models for square damages shown in Fig. 13(a), where the sizes of
considering damage patches are 4� 4 for the left and 10� 10 for the right, respectively.

Table 4
Results of fail-safe designs corresponding to Fig. 14 for square damages.

4� 4 10� 10

c cmax c
� c cmax c

�

SIMP 210.6999 254.6968 220.7133 266.8094 450.9851 345.7151
Material 1 212.6612 251.1608 219.4402 259.1313 408.2739 307.5418
Material 2 207.8138 245.6637 216.3276 261.5707 411.9660 318.2965
Material 3 239.8165 290.6256 247.3389 289.3638 455.4038 374.2881
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However, the designs based on material 3 still fall into the local
optimum, especially the design in Fig. 14(g). Take the density map
and damage scenario of Fig. 14(a) as an example. The cmax of
designs filled with material 1, 2, 3 are 252.8670, 255.4942,
254.9013, respectively. Because of this, material 3 will not be con-
sidered in the following example.

Furthermore, consider two damage patches shown in Fig. 13(b).
For solid structures, the related sensitivity is easy to compute, so
the accurate damaged models are employed during the optimiza-
tion to improve the accuracy of the results. For multiscale struc-
tures, the simplified method shown in Fig. 1(b) is adopted for the
partially damaged microstructural elements, that is, the trusses
of the elements covered by the damaged area are removed. The
simplified models adopted in this paper are shown in Fig. 15,
where the rod diameter of the microstructural elements is 0.12
as examples and their effective elasticity matrices are given. For
material 1, two types of simplified failure models are employed;
for material 2, four types of simplified failure models are
employed. The remaining failure models can be obtained by rotat-
ing or symmetric operations on such models. The worse perfor-
mance of the simplified models will result in a more
conservative design.
11
It should be pointed out that it is necessary to adopt simplified
models. The main reason is that accurate models may be geomet-
rically discontinuous due to the partial damage. Thus, the curves of
the effective elasticity tensors relative to the effective density may
have discontinuous first-order derivatives at these points. Choos-
ing the proper simplified model can avoid this phenomenon. Tak-
ing a damaged element in the left of Fig. 15(a) and its
corresponding simplified model as an example, the relation curves
between their elasticity tensor DH

2222 and density are shown in
Fig. 16. It can be seen that the derivative of the curve for the accu-
rate model is discontinuous at the purple point where the geomet-
ric discontinuity occurred. It poses a challenge to its fitting and
differentiating. Adopting the simplified model, on the other hand,
can avoid this point.

The effective elasticity tensors of the simplified damaged cells
also will be fitted by sextic polynomials. The designs of the solid
structures and multiscale structures are shown in Fig. 17. To
ensure the comparability of results, accurate damaged models will
be adopted in the calculation with the results in Table 5. The worst
damage cases are marked with red circles in Fig. 17.

The redundancy of the optimized structures depicted in Fig. 17
seems lower than that of the structures in Fig. 14 due to the



Fig. 15. The simplified models based on (a) material 1 and (b) material 2.
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smaller area of the damage patches. The better performances of the
multiscale optimized structures demonstrate the effectiveness of
the aforementioned simplified approach, and also confirms the
12
superiority of the multiscale structure. The higher redundancy of
material 2 does not contribute much to reduce the cmax of the mul-

tiscale structure, but it can effectively reduce c
�
.



Fig. 16. The curves of the effective elasticity tensor DH
2222 relative to the effective

density for accurate and simplified damaged model.

Fig. 18. Dimensions and boundary conditions for 3D cantilever beam example.

J. Yang, H. Su, X. Li et al. Computers and Structures 284 (2023) 107069
Combined with example 1, it can be seen that the performances
of optimized multiscale structures are not always better than the
optimized solid structure. There are two main reasons. First, the
configuration of the microstructure may not ‘‘adapt” to the current
constraints. Second, the multiscale designs may converge to local
optimization.
Fig. 17. Fail-safe designs based on (a,b) SIMP, (c,d) material 1 and (e,f) material 2 materi
damage patches are R ¼ 1:3 for the left and R ¼ 4:5 for the right, respectively.

Table 5
Results of fail-safe designs corresponding to Fig. 17 for circular damages.

R ¼ 1:3

c cmax c
�

SIMP 208.5945 218.8972 209.87
Material 1 203.9692 215.1473 205.39
Material 2 203.4005 211.6372 204.61

13
Through the above 2D numerical examples, it is not unreason-
able to note that the optimized multiscale structures tend to
generate a large number of gray elements, which not only
increases the robustness, but also makes these gray regions
al models for circular damages shown in Fig. 13(b), where the radius of considering

R ¼ 4:5

c cmax c
�

03 230.0779 303.0931 260.7544
27 231.5120 288.8144 251.5018
70 224.3687 293.9973 246.8813



Fig. 19. Deterministic designs based on (a) SIMP and (b) ORC truss material models for the 3D cantilever beam, and their compliances are c ¼ 3765:1494 and c ¼ 3626:2229,
respectively.

Fig. 20. Fail-safe designs based on (a,b) SIMP and (c,d) ORC truss material models for damages shown in Fig. 18, where the sizes of considering damage patches are
10� 20� 4 for the left and 20� 20� 4 for the right, respectively.
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self-supporting. Generally, 45� is the minimum overhang angle
that designs can be additive manufactured without support. There
is a theory that a design can be printed without any support if its
inclination angles of overhang portions are smaller than the mini-
mum overhang angle. It was first implemented by Leary et al. [42].
Then, some researchers designed self-supporting structures by
introducing overhang angle constraints into the optimization pro-
cess [43–45]. There are many trusses with overhang angles less
than 45� in the optimized solid structures, especially in example
2. In contrast, the multiscale structures are self-supporting in most
regions filled with gray elements, and only requires additional sup-
port in some white regions (e.g., the left side of Fig. 17(d)). This
brings convenience to its additive manufacturing.

5.4. Example 3

A 3D cantilever beam is used to demonstrate that the method
can be extended to 3D cases. As shown in Fig. 18, the size of the
cantilever beam is 120� 40� 8. One end face is constrained, and
14
a distributed vertical load with unit density is applied. Damage
occurs in the light blue area shown in the figure with a size of
100� 40� 8. The global volume fraction is set to 20%. Partial dam-
age to the microstructure are not considered, and the damage
patches are set to be cuboid regions with sizes of 20� 20� 4
and 10� 20� 4, respectively, as shown by the crimson cuboids
in the figure.

The selection of other parameters is the same as that in Sec-
tion 5.1, and the deterministic designs and results are obtained
in Fig. 19, where elements with a density less than 0.2 are not
shown. The ORC truss filled multiscale structure has lower compli-
ance than the solid structure, and the fundamental reason is that
the mechanical properties of the ORC truss are generally better
than those of the material assumed by the SIMP method with the
same density.

Still considering the damage set of level 2, for two damage cases
of 20� 20� 4 and 10� 20� 4, 81 and 171 cases need to be calcu-
lated in each iteration, respectively. The fail-safe designs are
shown in Fig. 20, and the design results are shown in Table 6.



Table 6
Results of fail-safe designs corresponding to Fig. 20.

10� 20� 4 20� 20� 4

c cmax c
� c cmax c

�

SIMP 3941.5818 4857.6131 4505.4999 3919.2830 5228.5781 4772.2955
ORC truss 3897.6228 4760.5423 4407.9432 4000.4665 5147.4381 4780.8244
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Similar to the 2D case, in the 3D example, the ORC truss filled
designs exist a large number of gray elements, which make struc-
tures redundant and self-supporting. Their cmax are lower than that

of the solid optimized structure, but c and c
�
are not always better.

That is, the comprehensive performances of the optimized multi-
scale structures are not always better than that of the solid opti-
mized structures. This shows the importance of the
microstructural configuration to the results again.
6. Conclusions

In this paper, an implementation method of MFSTO is
addressed. The partial damage of the microstructural element
may need to be considered when the multiscale structure is dam-
aged, which complicates the MFSTO. To facilitate the MFSTO prob-
lem, damage to the truss-like microstructure is simplified by
removing the damaged bars, which makes the elasticity matrix
and sensitivity easier to obtain.

The effective elasticity tensors of all microstructures are calcu-
lated via the HM. For reducing the computational cost, they will be
solved in advance and then fitted to a polynomial function of the
density. The sextic polynomial is chosen to maintain accuracy.
Using these polynomials, the effective elasticity tensors of the
microstructure with each density and the sensitivity can be
obtained simply during the optimization process.

To gain clearer and superior designs, the filtering and the
projection of variables are also applied to the MFSTO. The opti-
mization problem is solved by the MMA solver. The K-S func-
tion is adopted to replace the non-derivable maximum
function. The sensitivity related to failure can be obtained
through the intermediate variable such as the rod diameter of
the truss-like element.

Three numerical examples are listed in Section 5. The examples
show that the multiscale optimized structures designed via the
fail-safe theory can be more robust than the solid optimized struc-
ture, but it’s strongly related to the configuration of the
microstructure. Example 2 takes the partial damage of the
microstructure into consideration, which proves the effectiveness
of the simplified method. Example 3 extends the presented method
to 3D for demonstrating the reliability of the algorithm. The results
show that optimized multiscale structures, especially those that
can accommodate larger damage, are filled with a large number
of gray elements, which can support the entire structure. More-
over, these diffuse elements make optimized multiscale structures
self-supporting in these areas and thus provide better manufac-
turability than optimized solid structures.

There is still some work to be done. The algorithm implemented
in this paper is computationally expensive, so an efficient algo-
rithm should be developed in the future (e.g., combine with GPU
parallel [46], three-level mesh method [47], DOF reduction [48]).
As mentioned above, the microstructural configuration has a great
influence on the design results, and the best configuration needs to
be found through fail-safe design. Therefore, applying the fail-safe
concept to microstructure TO and concurrent TO should be also
focused in future work.
15
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