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A B S T R A C T   

The efficiency of solving sparse linear equations in isogeometric topology optimization (ITO) can be improved by 
the multigrid algorithm due to its excellent convergence rate. However, its convergence rate heavily relies on the 
smoother’s parameters. To address this problem, a new h-refinement multigrid conjugate gradient method with 
adaptive damped Jacobi (ADJ-hMGCG) has been developed. By analyzing the eigenvalues of the stiffness matrix, 
the damping coefficient of the smoother that achieves the fastest convergence rate has been determined. Due to 
the significant computational resources required to compute eigenvalues in the stiffness matrix, this paper also 
presents a preconditioned power method based on ITO and geometric multigrid characteristics to improve the 
efficiency of adaptive damping solutions. The results of 2D and 3D numerical examples show that the ADJ- 
hMGCG method successfully improves the solution speed and robustness while meeting the accuracy re-
quirements of topology optimization, and the total computational cost can be reduced by up to 59 % compared to 
traditional solvers for large-scale problems.   

1. Introduction 

Topology Optimization (TO) is essentially a mathematical method 
aiming to obtain the optimal material distribution under the given load 
and constraint conditions [1,2]. A series of influential TO methods have 
been proposed over the past few decades, such as the solid isotropic 
material with penalization (SIMP) approach [3-5], the level set method 
(LSM) [6-8], the evolutionary structural optimization (ESO) [9,10], the 
moving morphable components (MMC) method [11-13]. In recent years, 
isogeometric analysis (IGA) [14,15] has been utilized in TO due to its 
advantages in accuracy and continuity. Seo et al. [16] pioneered the 
combination of IGA and TO, in which the control points of spline sur-
faces and trimmed curves were used as design variables for the TO, 
thereby eliminating the post-processing effort for converting to CAD 
model. Subsequently, Hassani et al. [17] proposed an isogeometric to-
pology optimization (ITO) method based on the NURBS basis function to 
approximate the expression of the design and internal continuous den-
sity function, which avoids the dependence of optimization results on 
meshes and ensures the accuracy of geometry while effectively reducing 
the degree of freedoms (DOFs). Nowadays, ITO has been extended to be 

applied in many interesting fields such as heat transfer [18], electro-
magnetics [19], and acoustics [20]. 

In the field of ITO research, Wang et al. [21] utilized NURBS basis 
functions to replace the radial basis functions in the traditional LSM 
without constructing additional level set functions. Gao et al. [22] 
applied a density distribution function to represent the continuum 
structure, realizing an efficient ITO method. Significantly, the solution 
of sparse linear equations takes a significant portion of the whole time, 
and therefore improving solution efficiency has become a hot topic in 
academic research [23]. 

At present, improving the efficiency of solving equations mainly 
include the following two directions: firstly, using parallel computing to 
decompose the total task of the algorithm into multiple subtasks and 
then process these subtasks on multiple processors or computers [24]. 
The second is to algorithmically improve the computational efficiency 
and reduce the time complexity to fundamentally improve the solving 
efficiency [25,26]. 

In the field of parallel computing, Wadbro et al. [27] applied GPU 
parallel computing to the large-scale TO, and a heat conduction model 
with more than 4 million variables was adopted to verify its efficiency. A 
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parameterized level set ITO method based on GPU parallel strategy was 
proposed by Xia et al. [28], and the work also analyzed the computa-
tional complexity and parallelism of different steps in ITO. In the field of 
high-efficient algorithms, Amir et al. [29] proposed the reanalysis 
method, which utilizes the characteristic of small changes in adjacent 
iterative stiffness matrix to approximate linear equations at a lower cost. 
Long et al. [30] reduced the DOFs of finite element equations by using a 
new TO minimum volume model based on the reanalysis method. 

Alternatively, the multigrid method, as an accelerated algorithm 
improves the efficiency of solving large-scale linear equations by pro-
longing the exact solution of the coarse grid to the fine grid. Yin et al. 
[31] proposed the Multigrid Assisted Reanalysis method to reduce the 
computer cost in heat sinks. Amir et al. [32] accelerated the solution of 
large-scale linear equations by using multigrid preconditioned gradients 
(MGCG) solver. Wang et al. [33] proposed a high-efficiency ITO method 
by combining multilevel mesh, MGCG and local-update strategy and 
successfully reduced 37 %~93 % computational time compared to the 
traditional ITO. For more details about the multigrid algorithm, please 
refer to papers [34,35]. 

Note that the convergence rate of the multigrid algorithm depends 
on the smoother parameters [36]. Thus, it is necessary to choose a 
suitable smoother, such as the damped Jacobi method and successive 
over-relaxation method, to obtain an efficient solution with fewer iter-
ations [37]. Nevertheless, these smoothers require the pre-designed 
damping coefficients in advance. The optimal damping coefficient is 
different when facing different problems or models. Therefore, how to 
select the optimal damping coefficient is the key issue to reduce the 
number of iterations of the multigrid solver. 

This paper presents an adaptive damped strategy for the damped 
Jacobi method based on the eigenvalues of the stiffness matrix. The 
adaptive damped Jacobi method enables the traditional multigrid al-
gorithm to have better computational efficiency and robustness perfor-
mance. Simultaneously, we present a preconditioned power method 
based on two strategies, namely vertical and horizontal, to accelerate 
the computation of adaptive damping coefficients. Compared with 
traditional solvers, the proposed solver achieves better convergence 
performance. Finally, the effectiveness of this method is verified by four 
numerical examples. 

The remainder of this paper is organized as follows. Section 2 pre-
sents an overview of the NURBS and the formulation of ITO. Section 3 
presents the theory and algorithm implementation of the ADJ-hMGCG. 
Section 4 tests three 2D examples and one 3D example to demonstrate 
the efficiency of the ADJ-hMGCG in ITO. Finally, conclusions and some 
prospects are provided in Section 5. 

2. Theory of ITO 

The basic theories of this paper include NURBS, IGA and SIMP-based 
ITO. These theories will be briefly described in this section, and more 
details can be found in the references [3,15,38]. 

2.1. B-splines and non-uniform rational B-splines (NURBS) 

Computer-aided design (CAD) and computer graphics commonly 
employ NURBS to express complex curves and surfaces. The NURBS 
basis functions, as an extension of B-spline basis functions, construct 
intricate curves or surfaces through knot vectors, control points vectors 
and weights. The B-spline basis function Bi,p(ξ) used in the construction 
of the NURBS basis functions can be defined by the Cox-de Boor recur-
sion formula as: 

Bi,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
(1)  

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi
Bi,p− 1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bi+1,p− 1(ξ) (p > 0) (2)  

where we define the convention 0/0 = 0, ξi is a knot in the non- 
decreasing sequence knot vectors of B-spline, the knot vectors can be 
denoted by Ξ = [ξ1,ξ2,..., ξnc + p + 1], p represents the degree of the basis 
function and nc is the number of control points. 

The NURBS basis function can be expressed by assigning a weight wi 
as follows: 

Ni,p(ξ) =
Bi,p(ξ)wi

∑nc
j=1Bj,p(ξ)wi

(3) 

Subsequently, a p-degree NURBS curve C(ξ) can be expressed as a 
function related to the control point Qi and the NURBS basis function Ni,p 
as: 

C(ξ) =
∑nc

i=1
Ni,p(ξ)Qi (4) 

Based on the construction of the NURBS curves, NURBS surfaces 
enables to be defined as the product of p-degree NURBS curves in the 
ξ-direction and q-degree NURBS curves in the η-direction. And the 
equations for NURBS surfaces can be constructed as follows: 

S(ξ, η) =
∑nc

i=1

∑mc

j=1
Ni,p(ξ)Nj,q(η)Qi,j (5)  

where Qi,j represents the control points grid in both ξ- and η-directions, 
wi,j denotes the weight factor, Ni,p(ξ) and Nj,q(η) refer to the NURBS basis 
functions defined in both two directions. 

2.2. Isogeometric analysis 

The NURBS basis functions are utilized as the shape functions for 
IGA, realizing the same interpolation of geometric and displacement 
fields [39]. Thus, the variable x (such as coordinates, force, and 
displacement) in parameter coordinates ξ can be obtained from nearby 
control points for variables as: 

x(ξ) =
∑nc

i=1
Ni(ξ)xi (6)  

where Ni is the NURBS basis function of control point i, and xi is the 
function value of control point i. The discrete equilibrium equation for 
the elasticity problem can be expressed as F = KU, the global stiffness 
matrix can be constructed by the element stiffness matrix and the 
element density. In the SIMP-based ITO, the element stiffness matrix ke 
can be expressed as follows: 

ke =

∫

Ω̂e

BTD0B|J1|dΩ̂ =

∫

Ωe

BTD0B|J1||J2|dΩ (7)  

where B is the strain-displacement matrix, D0 is elasticity matrix, Ω̂e and 
Ωe represent the paracentric domain in NURBS parametric space para-
metric Ξ and the integration parametric space Ξ, J1 and J2 are the Ja-
cobian matrices which denote the transformation relation from NURBS 
parametric space to the physical space and the integration parametric 
space to the NURBS parametric space, respectively. 

Taking the 2D case as an example, the knot vector Ξ of NURBS 
includingΞξ = [ξ1,ξ2,…, ξnc + p + 1] in ξ-direction and Ξη = [η1,η2,…, ηmc 

+ q + 1] in η-direction, and the strain-displacement matrix B is repre-
sented as: 
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B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂N1

∂x
0 ⋯

∂Nnmc

∂x
0

0
∂N1

∂y
⋯ 0

∂Nnmc

∂y
∂N1

∂y
∂N1

∂x
⋯

∂Nnmc

∂y
∂Nnmc

∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8)  

where x and y represent the position parameter coordinates of the 2D 
case, nmc represents the product of the control points in Ξ, indicating 

that nmc = nc × mc. 
The Jacobian matrix J1 can be calculated as: 

J1 =

⎡

⎢
⎢
⎢
⎢
⎣

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

⎤

⎥
⎥
⎥
⎥
⎦

(9) 

When the Gauss orthogonal domain [-1, 1] is transformed into the 
NURBS parameter domain [ξi, ξi + 1) × [ηj, ηj + 1) in a linear fashion, the 

Fig. 1. The relation between control points and elements (p, q = 2): (a) the physical parameters of i th element are affected by the nearby (p + 1) × (q + 1) control 
points; (b) the i th control point and its corresponding elements; (c) the basis function of NURBS. 

Fig. 2. The h-refinement in generating finer grid.  
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Table 1 
The algorithm implementation for hMG.  

Algorithm 1 hMG 
Input: 
Global stiffness matrix Kl, load vector Fl, displacement vector Ul, prolongation matrix Pl and restriction matrix Rl. 
Output: 
The exact iteration solution Ul 

Function: Ul = hMG Solve(Fl ,Ul,Kl ,Pl)

1. Ul = Damped Jacobi(Kl ,Ul ,Fl,ω) // Pre-smoother 
2. Fl+1 = Rl⋅(Fl − KUl) // Restriction 
3. If (The grid of Kl + 1 is coarse enough) 
4. Ul+1 = K− 1

l+1Fl+1 // Direct solution 
5. else 
6. Ul+1 = hMG Solve(Fl+1 ,Ul+1 ,Kl+1,Pl+1)

7. end 
8. Ul = Ul + Pl ⋅ Ul + 1 //Prolongation 
9. Ul = DampedJacobi(Kl,Ul,Fl,ω) //Post-smoother 
10. Return Ul  

Table 2 
Algorithm implementation for the hMGCG.  

Algorithm 2 hMGCG 
Input: 
Global stiffness matrix K, load vector F, prolongation matrix Pl and restriction matrix Rl 

Output: 
The exact iteration solution of displacement vector Uk. 
Function: U = hMGCG(K, U, F, Pl,Rl) 
1. Initialize paramenters: maximum iteration maxiter and tolerance tol. 
2. k = 0 //Iteration counter of Function 
3. r0 = F − KUk //Calculating residual 
4. p0, z0 = hMG Solve(F,Uk,K,Pl ,Rl) //Using hMG as the preconditioner 
5. while k < maxiter: 
6. αk = rT

k zk/pT
k Kpk //Calculating step length 

7. Uk + 1 = Uk + αkpk //Updating solution vector 
8. rk + 1 = rk + 1 − αkKpk // Updating residual 
9. if ‖rk + 1‖/‖r0‖ < tol //Checking convergence criterion 
10. | Break 
11. end 
12. zk+1 = hMG Solve(F,Uk,K,Pl ,Rl) // Updating preconditioner 
13. βk = rT

k+1zk+1/rT
k zk // Updating search direction 

14. pk + 1 = zk + 1 + βkpk 

15. k = k + 1 //Updating iteration counter 
16. end 
17. Return Uk  

Table 3 
Algorithm implementation of the adaptive damped Jacobi method.  

Algorithm 3 Adaptive damped Jacobi method 
Input: 
Real matrix A, vector b, the initial guess solution x0, the optimal damping cofficient ωoptthe iteration of adaptive damped Jacobi iter, the tolerance tol. 
Output: 
The approximate solution x0 

Function x0 = damped Jacobi
(
A,x0,b,ωopt , iter, tol

)

1. k = 0 //Iteration counter 
2. D = 1./diag(A) //Obtain the inverse of the diagonal 
3. r = b − A ⋅ x // Calculate the error 
4. err = norm(r, 2) 
5. while err < tol & k< iter: 
6. x = x0 + ωopt ⋅ DT ⋅ r //Update the approximate solution 
7. r = b − A ⋅ x // Update the err 
8. err = norm(r, 2) // Check convergence criterion 
9. x0 = x 
10. k = k + 1 
11. end 
12. Return x0  
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mapping relationship can be expressed as follows: 
⎧
⎪⎨

⎪⎩

ξ =
ξi+1 − ξi

2
(ξ − 1) + ξi

η =
ηj+1 − ηj

2
(η − 1) + ηj

(10)  

where ξand η are the parameters defined in the Gauss orthogonal 
domain. Therefore, the Jacobi matrix J2 can be calculated as: 

J2 =

⎡

⎢
⎢
⎢
⎢
⎣

∂ξ
∂ξ

∂η
∂ξ

∂ξ
∂η

∂η
∂η

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎣

ξi+1 − ξi

2
0

0
ηj+1 − ηj

2

⎤

⎥
⎥
⎦ (11)  

2.3. SIMP-based ITO 

TO aims to identify the most efficient material distribution by 
minimizing strain energy while adhering to specified constraints. In the 
SIMP-based ITO, each element is allocated an element density ranging 
from 0 to 1. The relationship between the element density ρe and the 
elastic modulus Ee is presented as: 

Ee(ρe) = Emin + ρβ
e(E0 − Emin) ρeε[0,1] (12)  

where Emin refers to the minimum value of the elastic modulus, which is 
a small positive parameter that ensures the non-singularity of the 

Table 4 
Algorithm implementation of the power method.  

Algorithm 3 Power method 
Input: 
Real matrix A, the initial guess for eigenvector x0. 

Output: 
The corresponding eigenvector x0 and the largest eigenvalue λ of A 
Function [λ,x0] = Power method(A,x0)

1. Initialize parameters: maximum iteration maxiter and tolerance for iteration tol. 
2. k = 0 //Iteration counter 
3. while err < tol: 
4. b = max(x0) 
5. y = x0/b // Normalize the eigenvector estimate 
6. x0 = A ⋅ y // Update the eigenvector estimate 
7. err = |max(x0) − b| // Check convergence criterion 
8. λ = max(x0) 
9. k = k + 1 
10. end 
11. Return λ, x0  

Fig. 3. The illustration of vertical strategy: using the eigenvector: using the 
eigenvector sequence of the coarse grid as the initial solution for the fine grid. 

Fig. 4. The illustration of the horizontal strategy: using the eigenvector sequence of the stiffness matrix as the initial solution for the next iteration’s stiffness matrix 
at the same level. 
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Table 5 
Algorithm implementation for the preconditioned power method.  

Algorithm 4 Preconditioned power method 
Input: 
Iterations of ITO loop, real matrix Al in all levels, prolongation matrix Pl in all levels, the multigrid level l. 
Output: 
The maximum eigenvalue λl in different levels of Al 

Function [λ1, ..., λn] = Pre Power(Al ,Pl , loop)
1. Initialize parameters: maximum iteration maxiter and tolerance for iteration tol 
2. If loop==1: // Adopting vertical accelerating strategy 
3. xloop

n = [1,1, ...,1]T //n is the total number of levels, 
4. for i = n: − 1: 1 

5. 
[
λi,xloop

i

]
= Power method

(
Ai,xloop

i

)

6. xloop
i− 1 = Pi⋅xloop

i 
7. end 
8. else // Adopting horizontal acceleration strategy 
9. for i = n: − 1: 1 

10. 
[
λi,xloop

i

]
= Power method

(
Ai,xloop− 1

i

)

11. end 
12. end 
13.k = k + 1 
14. Return λ1,..., λn  

Fig. 5. Algorithm flowchart of the ADJ- hMGCG in ITO.  
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stiffness matrix. E0 denotes the elastic modulus of the solid element. The 
penalty coefficient, β, is utilized to achieve binarization of intermediate 
density and is usually set to β = 3. The minimum compliance optimi-
zation model can be expressed as: 

Fig. 6. The cantilever beam benchmark: (a) design domains and boundary conditions; (b) initial control points (p, q = 2).  

Fig. 7. The eigenvalues in descending order of stiffness matrix under different steps of ITO.  

Table 6 
The number of iterations of the GMGCG under different damping coefficients.  

steps\ω 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 AD 

1 40 33 28 25 22 20 18 78 142 — 16 
5 41 33 28 25 22 20 19 80 146 — 19 
10 43 35 30 27 24 22 21 106 184 — 22 
20 46 39 33 28 24 22 22 102 159 — 22 
50 49 40 34 30 27 24 22 99 170 — 23 
100 47 39 33 28 25 23 22 93 177 — 22  
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findρ = [ρ1, ρ2, ρ3,⋯, ρne]
T

minC(ρ) = UTKU =
∑ne

e=1
Ee(ρe)uT

e keue

s.t.KU = F

V(ρ)/V0 ≤ VF

0 ≤ ρmin ≤ ρe ≤ 1

(13)  

where C(ρ) represents the compliance of the structure; ρ is design vari-
able density; ne is the total number of elements; U refers to the 
displacement vector of the structure; F denotes the load vector of the 
structure; K is the global stiffness matrix of the structure; ue represents 
the displacement vector of elements; V0 and V(ρ) represent the volume 
of the design domain and material usages; VF is the volume fraction. The 
numerical calculations in ITO are carried out at the control points within 
a given physical field. Thus, the density of i th element ρei can be rep-
resented by the control point density as: 

ρei =
∑

jεci

Nij(ic)ρnj (14)  

where ci represents the set of all control points that affect i th element, ic 
denotes the center of the i th element and Nij(ic) is the NURBS basis 
function of control points ci corresponding to the center of the i th 
element, ρnj is the density of j-th control point. Therefore, the connection 
between control points density and elements density is depicted in 

Fig. 8. The plate with holes benchmark: (a) design domains and boundary conditions; (b) initial control points (p, q = 2).  

Fig. 9. Computational time of 200 iterations in different damping coefficients.  

Fig. 10. The computational time of solving damping coefficients with the 
traditional power method, preconditioned power method and Lanczos method. 

Fig. 11. The damping coefficients of ADJ-hMGCG in ITO.  
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Fig. 1, where the NURBS parameter space is [0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 
1] × [0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1], the degree p, q = 2 and the weight 
factor wi,j = 1. 

The control points can affect the element density of the multiple 
surrounding elements, so the checkerboard phenomenon will not appear 
in the process. The sensitivity of the objective function C(ρ) in SIMP- 
based ITO is formulated as 

∂C
∂ρnj

=
∑

jεCi

∂C
∂ρei

∂ρei

∂ρnj
=

∑

jεCi

− βρβ− 1
ei (E0 − Emin)uT

eikeiuei
∂ρei

∂ρnj
(15) 

And the sensitivity of the constraint function can be derived by the 
chain rule as follows: 

∂f
∂ρnj

=
∑

j∈ci

∂f
∂ρei

∂ρei

∂ρnj
=
∑

j∈ci

Vei

V0

∂ρei

∂ρnj
(16)  

where f represents the constraint function, which is defined as f =
V(ρ)
V0

−

VF, Vei is the volume of i th element. The derivative of the density of 
element ρei over the density of control points ρnj is 

∂ρei

∂ρnj
=

∑

jεci

Nij(ic) (17)  

3. ADJ-hMGCG method 

3.1. Multilevel based on h-refinement 

In the applications of ITO, an accurate physical model requires the 
fine grid, and the h-refinement is a method to insert multiple knots into a 
NURBS curve to get a finer grid. It is important to note that the h- 
refinement just changes the vector space without altering the curve. 

Assuming that C(ξ) =
∑nc

i=1Ri,p(ξ)Qi is defined on the knot vector Ξ =
[ξ1,ξ2,..., ξnc + p + 1], if we need to insert a knot ξ́ (ξ́ ∈ [ξt , ξt+1]) to the 

knot vector Ξ, the new knot vector becomes Ξnew =
[
ξ1,ξ2,⋯,ξt ,ξ’,ξt+1,

ξnc+p+1

]
, and the new control points sequence Qnew can be generated by 

the old control points sequence Qold through: 

Fig. 12. The final optimized structures of different damping coefficients: (a) hMGCG with ω = 0.1; (b) hMGCG with ω = 0.2; (c) hMGCG with ω = 0.3; (d) hMGCG 
with ω = 0.4; (e) hMGCG with ω = 0.5; (f) ADJ-hMGCG. 

Fig. 13. The plate with holes benchmark: (a) Design domains and boundary conditions; (b) Initial control points (p, q = 2).  

Table 7 
The average time in each ITO iteration with different solvers.  

case ADJ- 
hMGCG (s) 

LMGCG with 
damped Jacobi (s) 

hMGCG with 
SSOR (s) 

Jacobi- 
PCG (s) 

64 × 64 0.554 0.675 0.872 0.417 
128 ×

128 
3.17 3.742 3.953 3.006 

256×256 13.620 16.824 18.765 26.465  
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Fig. 14. The iteration of hMGCG in each iteration of ITO: (a) 64 × 64; (b) 128 × 128;(c) 256 × 256.  

Fig. 15. The final structures of different solvers: (a) The different solvers in 64 × 64; (b) The different solvers in 128 × 128; (c) The different solvers in 256 × 256.  
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Qnew
i = αiQold

i + (1 − αi)Qold
i− 1 (18)  

where the interpolation coefficient αi can be represented by 

αi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 1 ≤ i ≤ t − p

ξ́ − ξi

ξi+p − ξi
t − p + 1 ≤ i ≤ t

0 t + 1 ≤ i ≤ nc + p + 2

(19) 

Therefore, the h-refinement can be represented as a matrix multi-
plication, specifically Qnew = P ⋅ Qold, where P is the projection coeffi-
cient matrix maps the old control points sequence to the new control 
points sequence. The matrix P can be further expressed as: 

P =

⎡

⎢
⎢
⎣

Ik− p 0 0

0 α 0

0 0 Inc+p+2

⎤

⎥
⎥
⎦ (20)  

where I is the unit diagonal matrix. When both the ξ- and η-directions of 
a NURBS surface require h-refinement, the control points can be inserted 
in the η-direction by first fixing the ξ-direction and using h-refinement. 
Then, fixing the η-direction, refinement can be performed in the ξ-di-
rection. The projection coefficient matrix from the old to the new control 
points can be expressed as: 

Pξη = Pξ⋅Pη (21) 

Therefore, in the 2D case, new control points can be represented as: 

Qnew = Pξη⋅Qold (22) 

The process of the h-refinement in a 2D example can be found in 
Fig. 2. The knot vector of the initial can be represented as Ξold = [0, 0, 0, 
0.5, 1, 1, 1] × [0, 0, 0, 0.5, 1, 1, 1], while the new knot vector after the h- 
refinement is Ξnew = [0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1] × [0, 0, 0, 0.25, 0.5, 
0.75, 1, 1, 1]. Compared to the 2D example, the h-refinement in 3D 
requires fixing two directions and inserting the control points in the 
remaining direction. 

3.2. Basis theory of multigrid method 

The multigrid method, which is classified into geometric multigrid 
(GMG) and algebraic multigrid (AMG), is a high-efficient technique for 
solving large-scale linear equations by performing the basis trans-
formation for the corresponding coefficient vectors between the coarse 
and fine grids. The GMG method uses the geometric relationship be-
tween different levels to solve the equations and the h-refinement uti-
lizes the projection coefficient matrix to express the geometric 
relationship between the levels. Therefore, the GMG method in ITO does 
not require an extra algorithm to construct the prolongation matrix. The 
GMG method using h-refinement is called hMG. The hMG method can be 
divided into the preprocessing process and the solving process. In the 
preprocessing process, the restriction matrix R transforming a fine grid 
to a coarse grid and the prolongation matrix P transforming the coarse 
grid to the fine grid are constructed. Therefore, the coarse stiffness 
matrix Kl + 1 can be expressed by the fine stiffness matrix Kl as: 

Kl+1 = RlKlPl (23)  

where l represents the levels of multigrid. Besides, the Galerkin coars-
ening method, which sets the restriction matrix R as R = PT, is proved to 
be an effective solving method. 

The solving process consists of five steps, namely pre-smoothing, 
restriction, direct solution, prolongation, and post-smoothing. The al-
gorithm implementation for hMG is depicted in Table 1. 

Besides, the hMG method and the conjugate gradient method are 
both efficient in solving large-scale sparse linear equations but exhibit 

Fig. 16. The design domains and boundary conditions of a 3D cantilever beam.  

Fig. 17. The computational time of solving large-scale sparse linear equations 
with Jacobi -PCG and ADJ-hMGCG. 

Fig. 18. The optimized structure of the 3D cantilever beam after 500 iterations with (a) ADJ-hMGCG and (b) Jacobi-PCG.  
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slower convergence in some specific mathematical models [40,41]. 
Utilizing the hMG as the preconditioner of conjugate gradient, namely 
geometric multigrid conjugate gradients (hMGCG), has a better perfor-
mance in solving linear equations. The algorithm implementation for the 
hMGCG is shown in Table 2. 

3.3. Adaptive damped Jacobi method 

Traditional multigrid method typically employs the damped Jacobi 
iteration, over-relaxation iteration, or any other smoothers to solve 
large-scale equations of form F ¼KU [42,43]. During the iteration 
process of the Jacobi method, the calculations for each variable are in-
dependent, allowing for effective parallelization. Therefore, this section 
focuses on analyzing the optimal damping coefficient of the damped 
Jacobi iteration method. The iterative equation utilized in the damped 
Jacobi iteration method is: 

Uk+1 = Uk + ωD− 1(F − KUk) (24)  

where k is the number of iterations in the damped Jacobi method, ω 
represents the damping coefficient and D− 1 denotes the inverse of the 
diagonal of the stiffness matrix K. 

The convergence criterion of the damped Jacobi method is 

ρd =
⃒
⃒1 − ωλmax

(
D− 1K

)⃒
⃒ < 1 (25)  

where ρd represents the spectral radius of the iteration matrix and λmax 
denotes the maximum eigenvalues. If ρd > 1, the smoother will fail to 
converge. To address this issue, many researchers try using a low 
relaxation damping coefficient, such as using ω = 2/3 [44], to constrain 
the larger eigenvalues. Although it is an effective method for achieving 
convergence for specific models, it cannot be suitable for each model. 
Thus, it is worth exploring an adaptive damping coefficient to make the 
multigrid more efficient and robust. 

According to the convergence criterion, 0 < ω ≤ 2/λmax(D− 1K) is the 
convergence interval. In ITO, the stiffness matrix is a positive definite 
symmetric matrix, and the eigenvalues λ(D− 1K) are non-negative. When 
λ(D− 1K) approaches 0, the correlation between ω and ρd becomes low, 
and this part of eigenvalues is close to 1, which is still within the 
convergence range. Hence, ω is mainly utilized to minimize the larger 
part of λ(D− 1K), and the optimal solution for ωopt is: 

ωopt =
2

λmax
(26) 

Therefore, the solution of the optimal damping coefficient is trans-
formed into the solution of the maximum eigenvalue. The adaptive 
damped Jacobi method is shown in Table 3. 

3.4. Preconditioned power method 

As mentioned above all, the optimal damping coefficient for the ADJ- 
hMGCG requires the calculation of the maximum eigenvalue. Eigen-
value solutions require much computational time, and with the scale 
increasing, the computational complexity increases exponentially. 
There are many algorithms for solving the eigenvalues of the matrix, 
including the power method, inverse iteration method, QR iteration 
method, and Lanczos method. More details about these methods can be 
found in [45-47]. The time complexity of the inverse iteration method 
and QR iteration method is O(n3). For large-scale problem, both the 
power method and the Lanczos method are commonly used iterative 
approaches for solving maximum eigenvalue. The power method just 
involves simple matrix-vector multiplications and vector normalizations 
in each iteration, making it computationally efficient and amenable to 
parallelization. Table 4 illustrates the algorithm implementation of the 
power method. 

Besides, the convergence speed of the power method is dependent on 
the initial vector selection, and faster convergence can be obtained when 

the initial vector is closer to the maximum eigenvector. This paper 
proposes a preconditioned power method based on the properties of 
hMG and ITO. Firstly, a vertical strategy is presented by utilizing the 
characteristics of hMG, which prolongs the iterative solutions of the 
eigenvector sequence from the coarse level to the fine level. An all-ones 
vector, denoted as x2, is used to compute the eigenvalues of the stiffness 
matrix at L2. After the iterations of the power method, the initial vector 
x2 is transformed into an approximate eigenvalue sequence xnew

2 of the 
stiffness matrix K2. Then the xnew

2 is prolonged to L1 as the initial iter-
ation vector for the Power method, with x1 = P2xnew

2 . Lastly, x0 is solved 
as the previous step as L2 to L1. Details of the vertical strategy algorithm 
can be found in Fig. 3. 

Secondly, a horizontal strategy is employed by leveraging the simi-
larity of optimized structure shapes in adjacent iterations. Specifically, 
the eigenvector sequence of the stiffness matrix in loop1 is utilized as the 
initial value for the stiffness matrix in loop1 + 1. When the compliance 
changes slowly, this initial solution approximates the exact solution. The 
algorithm is illustrated in Fig. 4. 

There is no reference initial value available for the first calculation of 
the maximum eigenvalue of the stiffness matrix for the hMGCG, a ver-
tical strategy can be employed by using the eigenvalues of the lower- 
dimensional stiffness matrix as a preconditioner. With the iterations of 
ITO, the stiffness matrix changes with the variation of element density, 
but its structure changes small. Hence, the horizontal strategy is a more 
effective way to compute the maximum eigenvalue. To achieve the 
highest computational efficiency, the vertical strategy is employed in 
loop = 1 and the horizontal strategy is utilized in loop > 1, where loop 
represents the iteration number in ITO. Therefore, Table 5 illustrates the 
algorithm implementation of the preconditioned power method. 

3.5. Algorithm implementation 

The efficient and robust ITO, implemented in MATLAB, has been 
developed in this work to solve the minimum compliance problems. 
Fig. 5 illustrates the flowchart of the ITO with the ADJ-hMGCG. The 
preconditioned power method makes use of the characteristics of hMG 
and the ITO to accelerate the maximum eigenvalues calculation. Then 
the optimal damping coefficients can be chosen as Eq. (26). The ADJ- 
hMGCG is utilized to solve large-scale sparse linear equations. The 
effectiveness of the algorithm will be shown in Section 4, along with four 
classical examples in ITO. 

4. Numerical examples 

To verify the convergence and efficient performance of the ADJ- 
hMGCG, three two-dimensional examples and one three-dimensional 
example are presented in this section. All examples are run on a 
desktop computer with Intel Gold 5218 CPU of 2.29 GHz and MATLAB 
software. 

Section 4.1 presents a cantilever beam example to analyze the impact 
of damping coefficients and adaptive damping coefficients in the 
hMGCG. In Section 4.2, a plate with a circle hole is proposed to prove the 
adaptive damping coefficients is more efficient than the traditional 
method using a constant damping coefficient. Section 4.3 tests a 
quadratic annulus to verify the ADJ-hMGCG is more efficient than other 
solving algorithms. The ADJ-hMGCG was implemented in a three- 
dimensional model, to further verify the efficiency and robustness of 
the algorithm in Section 4.4. All the examples assume Young’s modulus 
E0 = 1 and Poisson’s coefficient μ = 0.3. And all the examples use 
second-degree NURBS element. Two iterations are chosen for smoother, 
which results in the fastest solution speed. The convergence criterion of 
ITO is adopted for all numerical examples: the iterations are stopped 
when the maximum change in the design variables is less than 1 % or the 
number of iterations is more than 200. 
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4.1. Cantilever beam 

In order to verify the impact of damping coefficients in the hMGCG, 
this section analyzes the stiffness matrix and iteration of several steps of 
a cantilever beam. The design domain, boundary conditions, and control 
points of the cantilever beam are shown in Fig. 6. The optimization 
objective of the example is the minimum compliance ITO model under 
the volume constraints, and the volume constraint ratio VF = 0.5. 

To obtain a more accurate discretization, we conducted 6 levels of h- 
refinement on the initial control points in both ξ- and η-directions. As a 
result, there are 128 × 64 elements in the ξ- and η-directions. Addi-
tionally, we constructed three levels of the grid for the hMGCG, where 
the stiffness matrix in different levels is 17160 × 17160, 4488 × 4488, 
1224 × 1224 respectively. Fig. 7 shows the eigenvector sequence dis-
tribution of the stiffness matrix in the coarsest mesh under different 
optimized structures during the ITO. Table 6 represents the iterations of 
the hMGCG for the cantilever beam under different damping 
coefficients. 

When the damping coefficient is ω = 1, the smoother degenerates 
into the Jacobi iteration method, and the spectral radius is far greater 
than 1, which does not converge during the solution process. When ω ∈
[0.8, 0.9], the spectral radius of the iteration matrix under this damping 
coefficient is greater than 1, but the spectral radius of these damping 
coefficients is less than 1 on the finer level. Thus, the hMGCG in these 
damping coefficients converges but requires higher iteration numbers. 
When ω ∈ [0.1, 0.7], the spectral radius of the iteration matrix is less 
than 1, enabling rapid convergence of the multigrid solver. ωopt is closer 
to the damping coefficients of 0.6 and 0.7. Consequently, setting the 
damped coefficient to 0.6 or 0.7 significantly enhances the performance 
of the damped Jacobi. Besides, using ADJ-hMGCG can accelerate the 
iteration performance by 1.03 times compared to the hMGCG method 
using ω = 0.7. 

4.2. Plate with a circle hole 

In order to verify the efficiency and robustness of the ADJ-hMGCG, a 
plate with a circle hole example was used in this section. This model is 
referred to in the paper [14]. The design domain, boundary conditions 
and initial control points of this optimization model are shown in Fig. 8. 
The volume constraint ratio is VF = 0.5. 

To achieve a more precise discrete domain, we discretized the design 
domain with 128 × 64 elements through h-refinement, resulting in the 
scale of the finest grid stiffness matrix is 17160 × 17160. In addition, we 
established three layers of the grid for the hMGCG and the stiffness 
matrix is 17160 × 17160, 4488 × 4488, 1224 × 1224 respectively. In 
Fig. 9, we present the computational time of the hMGCG under varying 
damping coefficients of ITO. The hMGCG converges when the damping 
coefficient is below 0.6, and a faster solution speed can be achieved 
when ω = 0.5, the ADJ-hMGCG outperforms the hMGCG with ω = 0.5. 
Besides, the proposed preconditioned power method in this paper re-
quires less time as well. Fig. 10 demonstrates the efficiency of the pre-
conditioned power method compared to other algorithms. The iterations 
count of the Lanczos method is j = 2

̅̅̅
n

√
, where n is the row number of 

the stiffness matrix. More details can refer the paper [47]. The pre-
conditioned power method acceleration ratio is 28.27 compared to 
traditional power method, 26.78 times that of Lanczos method. 

The optimal damping coefficient varies for different models. For 
instance, the optimal damping coefficient for the cantilever beam in 
Section 4.1 is ω = 0.7, while for the model in this section, it is ω = 0.5. 
Thus, the ADJ-hMGCG algorithm exhibits superior robustness and en-
hances the efficiency of ITO. 

Fig. 11 illustrates the values of the damping coefficient used in ITO. 
With iterations of ITO increase, the compliance changes slightly and the 
variation in the adaptive damping coefficient is also relatively small. 
Fig. 12 depicts the final optimization results using different solvers for 
the ITO. The final compliance falls within the acceptable error range, 

and the optimization outcomes are accurate. 

4.3. Quadratic annulus 

This section aims to demonstrate the efficiency of the ADJ-hMGCG 
and its greater applicability in problems with different scales. To this 
end, a quarter annulus example is employed to compare this algorithm 
with the conventional solution method. The design domain and 
boundary conditions and initial control point of the quarter annulus are 
presented in Fig. 13. The optimization objective is to obtain the mini-
mum compliance ITO model subject to a volume constraint with a 
constraint ratio of VF = 0.5. 

To generate grid elements with varying levels of discretization, we 
discretized the design domain into scales of 64 × 64, 128 × 128, and 256 
× 256 elements and construct three levels of the grid for hMGCG. 
Traditional large-scale equations solving methods include precondi-
tioned conjugate gradient method, multigrid method, and so on. The 
convergence speed of the multigrid method is related to the projection 
coefficient matrix and the smoother. Thus, the linear interpolation 
multigrid conjugate gradients (LMGCG) with damped Jacobi [32], the 
hMGCG with SSOR and the Jacobi preconditioned conjugate gradient 
method (Jacobi-PCG) is used to verify the high-performance of 
ADJ-hMGCG. ω = 0.3 is the better one in the convergence range, which 
is chosen for LMGCG and ω = 0.25 is the best for hMGCG with SSOR. 
Table 7 provides a comparison of the solution speeds between the 
adaptive damping multigrid method and the traditional finite element 
method. 

The ADJ-hMGCG algorithm outperforms traditional solvers in large- 
scale problems, achieving an acceleration ratio of 1.94 compared to 
Jacobi-PCG, 1.23 times that of LMGCG with damped Jacobi, and 1.377 
times that of hMGCG with SSOR in 256 × 256. Fig. 14 illustrates the 
optimized structure under various grid sizes and algorithms. 

The final compliance falls within an acceptable range of error, 
indicating accurate optimization results. The final structures are shown 
in Fig. 15. Thus, the ADJ-hMGCG is not hindered by the grid scale and is 
better for solving large-scale equations. 

4.4. 3D cantilever beam 

To further demonstrate the efficiency and robustness of the ADJ- 
hMGCG, we introduce a three-dimensional cantilever beam in this sec-
tion, along with its design domain, boundary conditions, as depicted in 
Fig. 16. The objective of the optimization model is to minimize 
compliance while satisfying a volume constraint, where the volume 
constraint ratio is set at VF = 0.3. 

The 3D cantilever beam is discretized into second-degree NURBS 
elements of size 128 × 64 × 4 and the stiffness matrix of the finest grid is 
154440 × 154440. Fig. 17 displays the computational time required for 
each iteration using different methods. After 200 iterations, Jacobi-PCG 
requires a total time of 31,917.44 s, while the ADJ-hMGCG requires a 
total time of 16,066.50 s, including adaptive coefficients solving time of 
85.44 s. Compared to the Jacobi-PCG algorithm, ADJ-hMGCG achieves a 
speedup ratio of 1.98 times. Notably, the geometric multigrid-CG 
method has not been compared with the ADJ-hMGCG method, since 
the former fails to converge in three-dimensional large-scale scenarios in 
ITO. Fig. 18 shows the final optimal structure of ITO, and the final 
compliance is within an acceptable range of error, indicating the accu-
racy of the optimization results. Therefore, the ADJ-hMGCG is also 
applicable to 3D examples. 

5. Conclusion 

This paper proposes an efficient and robust ADJ-hMGCG algorithm 
for solving large-scale sparse linear equations in ITO. The proposed 
method includes determining the most appropriate damping coefficient 
in the finite element equation and achieving efficient implementation in 
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the field of ITO. The effectiveness and versatility of the ADJ-hMGCG are 
verified through the numerical examples of two-dimensional calcula-
tions, including cantilever beams, plate with a circle hole and quadratic 
annulus, as well as three-dimensional cantilever beam. The results 
demonstrate that the ADJ-hMGCG can solve the problem of selecting 
damping coefficients under different models and accelerate the equa-
tions solving process of ITO. Therefore, this method could be an efficient 
and robust solver for complex ITO models [48,49]. Besides, we program 
the solver in a general way without taking full use of the computational 
characteristics of MATLAB, so the solver cannot achieve its best 
computational efficiency. When using languages such as C/C++ or 
Fortran, the 3D multigrid solver implemented in Section 4.4 should take 
less than 1 second on a single selected CPU core [43]. This method is not 
limited to ITO but is also applicable to the TO based on finite elements. 
In the future, we will investigate the field of multigrid smoothers, 
including the Chebyshev smoother [50] and the block Jacobi smoother 
[51], to develop more efficient and versatile solvers. Furthermore, this 
method can be combined with other TO methods and extended to effi-
cient and robust solutions for structural optimization problems in other 
fields such as heat and fluid. 
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