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A B S T R A C T   

The traditional finite element analysis for irregular design domains often encounters challenges such as intricate 
mesh discretization and inaccurate boundary description. In this paper, we propose a quadtree scaled boundary 
finite element method based on NURBS curves where the boundaries can be accurately represented. Quadtree 
decomposition, which satisfies the 2:1 rule, is employed to rapidly subdivide the analysis domain. The scaled 
boundary finite element method (SBFEM) is utilized to analyze the internal elements and address the 
displacement incompatibility issue of hanging nodes in the quadtree. Furthermore, the boundary element is 
discretized into boundary curves and internal lines, whose displacement fields are respectively constructed by 
the NURBS shape functions and the Lagrange shape functions, and then the subsequent analysis of the boundary 
element is completed by SBFEM. Finally, numerical examples are tested to demonstrate the feasibility of the 
proposed method, which effectively enhances computational efficiency and accuracy in solving irregular design 
domains.   

1. Introduction 

As a numerical method in computational mechanics, the finite 
element method (FEM) exhibits remarkable versatility and extensive 
applicability. However, the pre-processing stage of finite element anal-
ysis, which includes mesh discretization and element construction 
among other processes, can be quite time-consuming [1]. Furthermore, 
due to its inherent limitations as an approximate numerical solution, the 
FEM is not suitable for accurately characterizing the boundary of 
irregular design domains [2]. In 1997, Wolf and Song [3] pioneered the 
scaled boundary finite element method (SBFEM), which ingeniously 
combines the FEM with the boundary element method (BEM). This 
method preserves the features of low computational dimensionality and 
absence of fundamental solutions, thereby paving a new avenue for 
engineering scientific computation that demands high efficiency and 
accuracy. 

In recent years, the combination of quadtree decomposition and 
SBFEM has emerged as a prominent research area. Quadtree, as a two- 
dimensional geometric adaptive mesh generation technique based on 
hierarchical tree structures [4,5], enables efficient mesh subdivision. It 

is a customary practice to limit the maximum difference in the division 
levels between two adjacent elements to 1 (2:1 rule [6,7]), that is, to 
satisfy the balance. Balanced quadtree mesh can reduce the types of 
quadtree elements to 6, thereby mitigating computational complexity 
and facilitating a rapid and seamless transition of element size. How-
ever, quadtree mesh is seldom employed in conventional finite element 
frameworks due to the presence of hanging nodes and the fitting of 
curved boundary [8]. In 2014, Man et al. [9] proposed a novel scaled 
boundary finite element method utilizing a quadtree mesh composed of 
higher-order elements. In particular, the generation of the quadtree 
mesh is fully automated, greatly simplifying user input and operational 
steps, while SBFEM can effectively overcome the limitations of the 
quadtree mesh. Ooi et al. [10–12] presented a hybrid quadtree SBFEM 
(HQSBFEM) that integrates quadtree mesh with polygons featuring an 
arbitrary number of sides, as shown in Fig. 1, and incorporated polygons 
directly modeled by SBFEM on the boundary to significantly enhance 
the accuracy of boundary modeling. On this basis, an efficient heavy 
mesh algorithm combining quadtree decomposition and simple Boolean 
operation was explored to simulate crack propagation. Song et al. [13] 
investigated an adaptive refinement strategy based on quadtree SBFEM. 
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Chen et al. [14] utilized SBFEM based on quadtree polygons in the 
modeling calculation of functionally graded materials, which signifi-
cantly enhanced computational efficiency. Yu et al. [15] applied the 
HQSBFEM to two-dimensional transient heat transfer problems, sys-
tematically verifying the effectiveness and stability of the method in 
solving models with complex geometries. Additionally, references 
[16–19] discussed the image-based quadtree SBFEM, which provided 
robust theoretical and practical support for efficiently and accurately 
solving irregular design domains. 

Furthermore, Isogeometric analysis (IGA) [20] offers an appealing 
alternative approach for efficiently solving irregular design domains. 
The essence of IGA lies in the concept of isoparametric, where the basis 
functions employed for accurate geometric modeling are also utilized as 
the foundation for numerical method solution spaces [21]. Non-uniform 
rational B-splines (NURBS), a commonly used geometric spline in IGA, 
possess a unique property of maintaining high-order continuity on the 
element interface [22], which is an exceptional feature that traditional 
high-order finite element basis functions lack. Zhang et al. [23] were the 
first to utilize NURBS to describe the boundaries of SBFEM and subse-
quently proposed a novel numerical method known as scaled boundary 
isogeometric analysis (SBIGA) [24]. Klinkel et al. [2] developed a 
NURBS-based hybrid collocation-Galerkin method that combined the 
advantages of both SBFEM and isogeometric collocation method. Zang 
et al. [25] proposed a NURBS-enhanced SBFEM method that inserted 
NURBS curves into the divided polygonal mesh boundaries to examine 
the heat transfer problem in anisotropic media. Recently, a 
NURBS-enhanced finite element analysis method based on scale 
boundary parameterization was proposed [26], which organically 

combined the NURBS basis function and the Lagrange basis function to 
describe the boundary of curve elements. Additionally, the utilization of 
NURBS in SBFEM has been extended to investigate various problems 
including fracture mechanics [27], electrostatics [28], seepage [29], and 
soil vibration [30]. The majority of the aforementioned studies, how-
ever, are based on artificially divided NURBS patches or given detailed 
initial NURBS information, which inevitably poses challenges when 
applied to the analysis of complex design domains. 

On this basis, we propose a NURBS-boundary-based quadtree scaled 
boundary finite element method (NQSBFEM) for irregular design do-
mains. The curve boundary of the design domain is described by NURBS, 
which achieves accurate representation without requiring a substantial 
quantity of seed points for detailed division of the domain boundary, 
thereby reducing mesh division costs. Among them, quadtree decom-
position following the 2:1 rule is utilized to mesh the design domain. 
Under the given NURBS information, the knot vector corresponding to 
the intersection point of the curve and quadtree mesh is obtained 
through point inversion, followed by knot insertion to obtain updated 
NURBS information. This results in the NURBS control points being 
precisely located at the intersection position, facilitating subsequent 
accurate solutions. By means of SBFEM, the boundary elements are 
discretized into NURBS curves and internal lines. Subsequently, the 
displacement fields of both are constructed using NURBS shape func-
tions and traditional Lagrange shape functions respectively, enabling 
efficient analysis and solution. 

The outline of the remainder of this paper is as follows: Section 2 
reviews the underlying concepts of NURBS and SBFEM; Section 3 pre-
sents an innovative implementation approach for NQSBFEM; Section 4 

Fig. 1. Decomposition diagram of hybrid quadtree SBFEM.  

Fig. 2. Comparison of NURBS and Lagrange shape functions in 1D.  

X. Li et al.                                                                                                                                                                                                                                        



Engineering Analysis with Boundary Elements 159 (2024) 418–433

420

elaborates the flow of NQSBFEM implementation; Numerical examples 
are presented in Section 5 to demonstrate the effectiveness of the pro-
posed method; and finally, Section 6 briefly summarizes the key points 
discussed throughout this paper. 

2. Summary of basic theories 

2.1. Concepts of NURBS 

Currently, various spline techniques are utilized in IGA, such as 
hybrid B-splines and NURBS [31,32], T-splines [33], PHT splines [34], 
etc. However, B-splines and NURBS remain the most prevalent spline 
techniques for IGA. Non-uniform rational B splines (NURBS), a common 
method for generating and representing curves and surfaces, can be 
constructed using B-splines. In B-spline, the knot vector Ξ = {η0, η1,⋅⋅⋅, ηn 

+ p} is defined as a sequence of non-decreasing real numbers in the 
parameter space, where n represents the number of basis functions 
(equivalent to the number of control points) and p denotes the order of 
the B-spline, with a maximum multiplicity of the knot vector being p + 1. 

In a one-dimensional space, the B-spline basis functions under a 
given knot vector can be recursively defined using the well-known Cox- 
de Boor formula [35] 

Bi,0(η) =
{

1, if ηi ≤ η < ηi+1

0,Otherwise

Bi,p(η) =
(η − ηi)Bi,p− 1(η)

ηi+p − ηi
+

(
ηi+p+1 − η

)
Bi+1,p− 1(η)

ηi+p+1 − ηi+1
if ηi ≤ η < ηi+1

(1)  

where, we define the convention 0/0 = 0. The B-spline basis function 
can map the points in the parameter space where the knot vectors are 
located to the physical space where the control points are located, thus 
realizing the correspondence between the knot span [ηi, ηi + 1)in the 
parameter space and the element Vi in the physical space. 

Furthermore, the NURBS basis functions can be implemented 
through B-splines rationalization. By assigning a positive weight wi to 
each B-spline basis function, the NURBS basis function is defined as 

Ni,p(η) =
Bi,p(η)wi

∑n
j Bj,p(η)wj

(2) 

Compared with the conventional Lagrange shape functions, as 
depicted in Fig. 2, the NURBS basis functions possess numerous 
distinctive properties [36], which are succinctly enumerated as follows: 
(1) Nonnegativity: Ni,p ≥ 0; (2) Partition of unity: 

∑n
i Ni,p(η) = 1; (3) 

Local support: Ni,p(η) = 0 for η ∕∈ [ηi, ηi + p + 1);(4) Differentiability: Ni,p(η) 
is p - k times differentiable where k is the multiplicity of the knots. 

The corresponding NURBS curve can be expressed as 

C(η) =
∑n

i=0
Ni,p(η)Pi (3)  

where Pi is the control point of the NURBS curve. 

2.2. Concepts of SBFEM 

For the fundamental concepts and coordinate transformations of the 
SBFEM, Wolf and Song have provided a detailed discussion in the lit-
eratures [37,38], and only a concise overview is given in this section. For 
the coordinate transformation of the scaled boundary, a 
two-dimensional region has been selected as the subject of analysis, 
which is illustrated in Fig. 3. Where O is referred as scaling center, (ξ, η) 
represents scaled boundary coordinate system. The conversion from the 
Cartesian coordinate system to the scaled boundary coordinate system is 
achieved by 

x̂(ξ, η) = x0 + ξNu(η)x = x0 + ξx(η)
ŷ(ξ, η) = y0 + ξNu(η)y = y0 + ξy(η) (4)  

where Nu represents the finite element shape functions, defined as Nu =

[Nu
1 Nu

2] = [(1 − η) /2 (1 + η) /2], (x̂, ŷ) represents the coordinate of 
arbitrary point in the physical domain, (x, y) denotes the nodal co-
ordinates, defined as x = [x1, x2]T, y  = [y1, y2]T, (x0, y0) and (x(η), y(η)) 
denote the scaling center’s physical coordinate and the physical co-
ordinates of points on the boundary corresponding to the tangential 
coordinate η, respectively. 

The displacements u (ξ, η) = [ux (ξ, η) uy (ξ, η)]T are interpolated as 

u(ξ, η) = Nu(η)u(ξ) (5)  

where Nu represents the interpolation functions, defined as Nu =

[Nu
1I2×2 Nu

2I2×2], I2 × 2 is the identity matrix, u (ξ) represents analytic 
components in the radial direction, defined as u (ξ) = [u1x(ξ, η) u1y(ξ, η) 
u2x(ξ, η) u2y(ξ, η)]T. By introducing the strain equation (ε = LTu), the 
expression for strain can be derived 

ε(ξ, η) = B1(η)u(ξ),ξ +
1
ξ
B2(η)u(ξ) (6)  

where 

B1(η) = b1(η)Nu(η) =
1
|J|

⎡

⎢
⎢
⎣

y(η),η 0

0 − x(η),η
− x(η),η y(η),η

⎤

⎥
⎥
⎦Nu(η)

B2(η) = b2(η)Nu(η),η =
1
|J|

⎡

⎢
⎢
⎣

− y(η) 0

0 x(η)

x(η) − y(η)

⎤

⎥
⎥
⎦Nu(η),η

(7)  

where J is the Jacobi matrix, expressed as 

J =

[
x(η) y(η)

x(η),η y(η),η

]

(8)  

Therefore, the stress expression is 

σ(ξ, η) = D
(

B1(η)u(ξ),ξ +
1
ξ
B2(η)u(ξ)

)

(9) 

Substituting the aforementioned coordinate transformation into the 
principle of virtual work, we can elegantly transform the control partial 
differential equations into a set of second-order ordinary differential 
equations pertaining to the scaled boundary coordinates ξξ, that is, 
scaled boundary finite element equation 

E0ξ2u(ξ),ξξ +
(
E0 + ET

1 − E1
)
ξu(ξ),ξ − E2u(ξ) = 0 (10)  

Fig. 3. Scaled boundary coordinate system.  
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where the coefficient matrix E0, E1 and E2 can be represented as follows 

E0 =

∫

∂Ω
B1(η)TDB1(η)|J|dη

E1 =

∫

∂Ω
B2(η)TDB1(η)|J|dη

E2 =

∫

∂Ω
B2(η)TDB2(η)|J|dη

(11) 

Assume that the general solution of the SBFEM equation has a power 
series of the following form: 

u(ξ) = c1ξλ1 ϕ1 + c2ξλ2 ϕ2 + ...+ cnξλn ϕn = ϕξλc (12)  

where λi and ϕi are the corresponding eigenvalue and eigenvector 
respectively, and the integral constant ci depends on the boundary 
conditions. Visually, this solution can be interpreted as a modal super-
position method that is similar to the standard finite element format. 
The eigenvalue vector can be regarded as the modal displacement vector 
of the boundary node, and eigenvalue is the radial modal scale factor. 

By substituting the general solution into the SBFEM equation of 
displacement, the following quadratic eigenvalue equation is obtained: 
(
λ2E2

0 − λ
(
ET

1 − E1
)
− E2

)
ϕ = 0 (13)  

q =
(
ET

1 − λE0
)
ϕ (14)  

where Eq. (14) represents a modal interpretation of the boundary force, 
and can be considered as the nodal force mode required for the corre-
sponding displacement mode on the equilibrium boundary. Therefore, 
all quantities related to ϕ are assumed to be general solutions associated 
with displacement, while q is directly linked to modal forces at the 
boundary. 

It has been demonstrated that linearization of the above quadratic 
equations is beneficial at the cost of doubling the number of equations to 
be solved. Subsequently, the following formula is derived 

Z
[

ϕ
q

]

= λ
[

ϕ
q

]

(15)  

where Z is the Hamilton matrix, defined as 

Z =

[
− E− 1

0 ET
1 E− 1

0

E2 − E1E− 1
0 ET

1 E1E− 1
0

]

(16)  

It can be obtained by schur decomposition [39] 

Z
[

ϕ
q

]

= λ
[

ϕ
q

]

=

[
ϕ1 ϕ2
q1 q2

][
λ−

λ+

]

(17)  

where the superscript "+" and "− " represent the positive and negative 
eigenvalues respectively. 

To determine the stiffness matrix of the domain, the eigenvalues and 
eigenvectors are brought into the general solution 

u(ξ) = ϕ1ξλ+c1 + ϕ2ξλ− c2 (18)  

For the bounded domain problem, the second part of Eq. (18) can be 
omitted. Additionally, to determine the stiffness matrix in the finite 
domain, the displacement u(ξ = 1) at the boundary is compared with its 
corresponding equivalent nodal forceP = q1c1. Since the integration 
constant imposes a boundary condition on the force mode, the inte-
gration constant c1 is determined by calculating the value of Eq. (18) at 
ξ = 1. 

c1 = ϕ− 1
1 u(ξ= 1) (19) 

Subsequently, substitute the aforementioned equation into the 
expression denoting the corresponding nodal force P 

P = q1ϕ− 1
1 u(ξ= 1) (20)  

Therefore, the stiffness matrix of the bounded domain is 

K = ±q1ϕ− 1
1 (21)  

3. NURBS-boundary-based quadtree SBFEM 

3.1. Scaled boundary element based on NURBS 

For the irregular design domain, the boundary is represented by a 
NURBS curve. Additionally, the boundary element is discretized into 
boundary curve and internal line elements with the SBFEM, as depicted 
in Fig. 4. The radial coordinate ξ and the tangential coordinate η 
constitute a scaled boundary coordinate system, with the latter con-
structing into the NURBS curve parameter space of the outer boundary. 
And the radial coordinate is a dimensionless scale parameter that rep-
resents the "scale factor" of the outer boundary, exerting control over the 
shape and extent of the domain. When ξ = 1, it represents the outer 

Fig. 4. Schematic diagram of boundary element based on NURBS, (a) model diagram, (b) parameter space.  
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boundary Гo; when ξ = ξj, it indicates the scaled boundary Гj; and when ξ 
= 0, it denotes the scaling center O. The NURBS curved edges of the 
boundary elements in physical space are transformed into parameter 
space segments[ηi, ηi + 1) through mapping. Consequently, the boundary 
domain Ωe is also mapped onto a corresponding parameter space 
segment, where ξ1 = 1, ξ0 = 0. 

For the internal elements within the design domain, there are a total 
of 16 distinct element configurations, six of which are illustrated in 
Fig. 5. The remaining elements can be obtained by rotating from the 
following set of element forms [40]. Where black circles and white 
circles represent element nodes and hanging nodes, respectively. 
Furthermore, the stiffness matrices of the aforementioned elements are 
pre-computed and stored in memory for quick retrieval during the so-
lution process. 

3.2. Point inversion 

From Fig. 4, it can be observed that the control points are not situated 
at element nodes, which unavoidably impacts the accuracy of the so-
lution. To ensure the accuracy of subsequent SBFEM analysis for NURBS 
curves of boundary elements, a control point application strategy is 
proposed, that is, the coincidence of control points and element nodes is 
controlled by point inversion and knot insertion. Where, the element 
nodes (the intersection point of the quadtree mesh and NURBS curve C 
(η)) located on the NURBS boundary of physical space are utilized for 
inversion to obtain the corresponding knot vector. 

In the context where the node is defined as Pin = (x, y, z) determining 
the corresponding parameter η such that C(η) = Pin is referred as point 
inversion. The solution process can be divided into three steps: (1) 
Utilizing the strong convex hull property of NURBS curves, identify 
which spans of the curve C(η) can possibly contain node Pin; (2) 
Employing knot refinement or insertion to extract the aforementioned 
spans and convert them into power basis form; (3) For each span, 
determine three polynomial equations with unknown parameters, and if 

these equations have a common solution, then Pin is located on the curve 
C(η). 

Suppose that degree p = 2, then a span r(η) of NURBS curve can be 
represented as vector function 

r(η) = aw
0 +aw

1 η+aw
2 η2 (22)  

where aw
i = (wixi, wiyi, wizi, wi). Projecting the above equation into 3D 

space and setting it equal to Pin, we obtain 

w2x2η2 + w1x1η + w0x0

w2η2 + w1η + w0
= x

w2y2η2 + w1y1η + w0y0

w2η2 + w1η + w0
= y

w2z2η2 + w1z1η + w0z0

w2η2 + w1η + w0
= z

(23)  

which yields 

w2(x2 − x)η2 + w1(x1 − x)η + w0(x0 − x) = 0
w2(y2 − y)η2 + w1(y1 − y)η + w0(y0 − y) = 0
w2(z2 − z)η2 + w1(z1 − z)η + w0(z0 − z) = 0

(24) 

It should be noted that this paper solely focuses on the 2D scenario, 
thus letting z = 0. Additionally, the Newton iteration method is 
employed to minimize the distance between Pin and C(η), as illustrated 
in Fig. 6. If the minimum distance falls below a predetermined precision, 
then the point is deemed to lie on the curve. 

Given an initial value η0, define the dot product 

f (η) = C’(η)⋅(C(η) − Pin) (25) 

Regardless of whether Pin lies on the curve, when f (η) = 0, the dis-
tance from point Pin to C(η) is minimized. Let ηi denote the parameter 
value obtained in the i th iteration 

ηi+1 = ηi −
f (ηi)

f ′(ηi)
= ηi −

C′(ηi)⋅(C(ηi) − Pin)

C’′(ηi)⋅(C(ηi) − Pin) + |C′(ηi)|
2 (26)  

And two zero tolerances can be employed to denote convergence, 
convergence criteria are as follows: 

|C(η) − Pin| ≤ ε1

|C′(η)(C(η) − Pin)|

|C′(η)||C(η) − Pin|
≤ ε2

|(ηi+1 − ηi)C
′(η)| ≤ ε1

(27)  

where, ε1 indicates whether the measure of Euclidean distance is zero; ε2 
indicates whether the measure of cosine is zero. 

3.3. Knot insertion 

After obtaining the parameter η from 3.2, it is necessary to incor-

Fig. 5. Internal element forms.  

Fig. 6. (a) Projection of a point onto a curve, (b) the parameters of the point inversion.  
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porate it into the existing knot vector in order to construct a new knot 
vector and control points. Fig. 7 illustrates the schematic diagram of the 
NURBS element scaled boundary model after knot insertion. 

Let η ∈ [ηk,ηk+1), insert η into knot vector Ξ to form a new knot vector 
Ξ = {η0 = η0, ⋯, ηk = ηk, ηk+1 = η}. The NURBS curve on Ξ is repre-
sented as 

C(η) =
∑n+1

i=0
Ni,p(η)Qi (28)  

where Ni,p represents the basis function of p order on the knot vector Ξ, 
Qi denotes the new control point, and the knot insertion can be inter-
preted as the solution process of Qi, which is defined as 

Qi = αiPi + (1 − αi)Pi− 1 (29)  

where 

αi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, i ≤ k − p
η − ηi

ηi+p − ηi
, k − p + 1 ≤ i ≤ k

0, i ≥ k + 1

(30) 

In actuality, the knot insertion primarily involves altering the basis of 
vector space, while the curve remains unchanged both geometrically 
and parametrically. 

3.4. Solution of boundary element stiffness matrix 

For quadtree decomposed design domain with NURBS-based 
boundaries, as mentioned above, the internal elements can be directly 
resolved using SBFEM. The external boundary element is depicted in 
Fig. 8, which can be firstly transformed into NURBS curve segments and 
ordinary line elements through the utilization of SBFEM. 

The former, as a domain boundary, can be discretized using iso-
geometry, while the radial direction remains analytically treated. The 
mapping between physical space and parameter space can be reformu-
lated as follow 

x̂(ξ, η) = x0 + ηN(η)xη

ŷ(ξ, η) = y0 + ηN(η)yη (31)  

where (xη, yη) represents the coordinates of the control point associated 
with the outer boundary, N(η) denotes the NURBS shape functions 
corresponding to control points. 

Using the concept of isoparametric, the displacement mode within 
the realm of isogeometry, namely the displacement field variable uG, can 
be obtained utilizing NURBS shape functions. 

uG(ξ, η) = NN(η)uG(ξ) (32)  

where NN = [N1I2×2 N2I2×2 N3I2×2] represent the shape functions N, 
which are applied to each DOF of an element separately by means of 
multiplication with the identity matrix I2×2. 

The stress field can be mathematically formulated as 

σ(ξ, η) = Dε(ξ, η) = D
(

BG
1 uG(ξ),ξ+

1
ξ
BG

2 uG(ξ)
)

(33)  

where BG
1 and BG

2 denote the correlation between strain and displace-
ment 

BG
1 = b1NN

BG
2 = b2NN,η

(34)  

and 

bG
1 (η) =

1
⃒
⃒JG

⃒
⃒

⎡

⎢
⎢
⎣

ŷ(η),η 0

0 − x̂(η),η
− x̂(η),η ŷ(η),η

⎤

⎥
⎥
⎦

bG
2 (η) =

1
⃒
⃒JG

⃒
⃒

⎡

⎢
⎢
⎣

− ŷ(η) 0

0 x̂(η)

x̂(η) − ŷ(η)

⎤

⎥
⎥
⎦

(35)  

where JG is the Jacobi matrix, defined as 

JG =

[
x̂(η) ŷ(η)

x̂(η),η ŷ(η),η

]

(36) 

Regarding the boundary element depicted in Fig. 8, when solving its 
scaled boundary finite element equation, the coefficient matrix Ei (i = 0, 
1, 2) is designated as 

Fig. 7. Schematic diagram of the NURBS element scaled boundary model after knot insertion.  

Fig. 8. Schematic diagram of boundary element.  
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E0 =

∫

∂Ωu
B1(η)TDB1(η)|J|dη +

∫

∂ΩG
BG

1 (η)
TDBG

1 (η)
⃒
⃒JG

⃒
⃒dη

E1 =

∫

∂Ωu
B2(η)TDB1(η)|J|dη +

∫

∂ΩG
BG

2 (η)
TDBG

1 (η)
⃒
⃒JG

⃒
⃒dη

E2 =

∫

∂Ωu
B2(η)TDB2(η)|J|dη +

∫

∂ΩG
BG

2 (η)
TDBG

2 (η)
⃒
⃒JG

⃒
⃒dη

(37)  

Furthermore, refer to Section 2.2 for subsequent stiffness matrix solving 
methods. 

4. Pre-processing process 

4.1. Mesh generation under NQSBFEM 

This section primarily elucidates the implementation of the pre- 
processing process for NQSBFEM. Suppose a square plate with circular 
hole, as shown in Fig. 9, has a side length of 4, and the coordinates of the 
four corner points are [0 0; 4 0; 4 4; 0 4]. Wherein the circular hole is 
represented by NURBS curves with a radius of 1, the coordinates of the 
control points are [3 1.5; 3 0.5; 2 0.5; 1 0.5; 1 1.5; 1 2.5; 2 2.5; 3 2.5; 3 
1.5], the knot vector is [0 0 0 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1], and the 
corresponding weights are [1

̅̅̅
2

√
/2 1

̅̅̅
2

√
/2 1

̅̅̅
2

√
/2 1

̅̅̅
2

√
/2 1]. 

Firstly, the design domain is enlarged to a specific size of 210 = 1024, 
while the level of largest and smallest sub-cells are taken as 29 = 512 and 
23 = 8, respectively. Moreover, the number of seed points for the square 
boundary and circular hole boundary are set at 40 and 13 respectively, 
followed by the subsequent implementation of quadtree decomposition. 
The decomposed quadtree of the design domain is exhibited in Fig. 10 
(a). Based on this, a balanced quadtree decomposition is performed 
according to the 2:1 rule, as illustrated in Fig. 10(b). It can be observed 
that the level difference limit between adjacent quadtree meshes after 
balancing does not exceed 1. 

Next, proceed to label the divided mesh and accurately identify the 
transition blocks. The blue transition blocks correspond to the meshes 
where the boundary is situated, and the red dot is the intersection point 
where the geometric boundary intersects the blocks, as depicted in 
Fig. 11. 

Fig. 9. Square plate with circular hole.  

Fig. 10. Quadtree decomposition of square plate with circular hole: (a) unbalanced (b) balanced.  

Fig. 11. Quadtree mesh and transition blocks with numbering.  
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Furthermore, it is necessary to extract the coordinates of element 
nodes (intersection points). On the basis of the original NURBS infor-
mation, a new NURBS curve is constructed using point inversion and 
knot insertion as mentioned in Section 3. The updated NURBS curve is 
shown in Fig. 12, where red dots represent control points on boundary 
elements nodes and blue asterisks represent additional generated con-
trol points. It should be noted that the element nodes must be multiplied 
by scaling factors in order to fulfill the original size requirements. 
Considering that the node on the boundary connects two elements, the 
point inversion and knot insertion at this point will be performed twice. 
This will result in the occurrence of duplicate knots, thereby making the 
control point here being the point on the boundary. 

Finally, all quadtree dimensions needs to be scaled back to original 

size of 4 × 4. The traditional hybrid quadtree mesh, as depicted in 
Fig. 13(a), exhibits a direct linear connection between nodes and nodes, 
which inevitably compromises the subsequent accuracy of solving. To 
address this issue, we replace the aforementioned linear boundaries with 
the updated NURBS curve to establish a new quadtree mesh, as illus-
trated in Fig. 13(b). 

4.2. Meshes comparison under NQSBFEM and HQSBFEM 

A circular structure and a petal structure with hole are used for 
comparison. The circular structure is formed by employing a solitary 
NURBS curve, whereas latter is constructed using two NURBS curves, as 
illustrated in Fig. 14. The basic settings of the quadtree are as follows: 
the size is set to 210 = 1024, the level of largest sub-cell is limit to 29 =

512, and the level of smallest sub-cell is limit to 23 = 8. 
The circular quadtree structures under NQSBFEM and HQSBFEM are 

depicted in Fig. 15(a) and (b), respectively, when the number of seed 
point is set to 52. It can be observed that the NQSBFEM based on NURBS 
boundary is a viable scheme, capable of achieving a smooth boundary 
structure. The HQSBFEM, in contrast, displays rough boundary due to 
the straight-line connections between nodes. 

Fig. 16(a) and (b) show the diagrams of petal quadtree structure with 
hole under NQSBFEM and HQSBFEM, respectively. With a seed number 
of 52 at the outer boundary and 10 at the inner boundary, the results 
demonstrate that the NQSBFEM this method is applicable for multi- 
boundary design domain as well. Moreover, this method yields a 
smoother structural boundary. 

The above figures clearly demonstrate the feasibility of mesh gen-
eration under NQSBFEM. This approach enables the precise generation 
of smooth boundaries for structures, potentially circumventing the need 

Fig. 12. The updated NURBS curve and control points.  

Fig. 13. Quadtree mesh after scaling, (a) HQSBFEM, (b) NQSBFEM.  

Fig. 14. Schematic diagram of structure, (a) circular, (b) petal with hole.  
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Fig. 15. Comparison of circular structures, (a) NQSBFEM, (b) HQSBFEM.  

Fig. 16. Comparison of petal structures with hole, (a) NQSBFEM, (B) HQSBFEM.  

Fig. 17. Flowchart of the NQSBFEM implementation.  
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for excessive mesh refinement in traditional HQSBFEM to approximate 
boundary. Undoubtedly, this advancement has significant prospect to 
streamline mesh division processes and save valuable time. 

4.3. The flowchart of NQSBFEM implementation 

Firstly, defining the initial design domain, quadtree related param-
eters, load, boundary conditions, material properties and other infor-
mation. Secondly, parsing the input file by constructing explicit and 
implicit geometric representations and performing quadtree decompo-
sition. The quadtree meshes are used to classify blocks and calculate the 
intersection points information. Thirdly, extracting the intersection 
points information of the above blocks at the geometric boundary, new 
NURBS information is constructed with the help of the control points 

updating strategy proposed in Section 3.2 and 3.3, and the original 
geometric boundary is replaced with the aforementioned NURBS curves 
to construct a new quadtree meshes. Fourthly, the stiffness matrix of six 
internal elements is pre-calculated, and the element stiffness matrix for 
each element, including boundary elements, is determined. Subse-
quently, the overall stiffness matrix is assembled. Building upon this 
foundation, the finite element equilibrium equation is solved by deter-
mining loading and boundary conditions. Finally, the NURBS-boundary- 
based quadtree scaled boundary finite element method is realized, and 
the required displacement and stress are obtained. The implementation 
flow chart of NQSBFEM is shown in Fig. 17. 

5. Numerical examples 

5.1. Example 1 

This example serves primarily to validate the rationality of the pro-
posed NURBS-boundary-based SBFEM. Assume a curve boundary 
element and its size information under quadtree decomposition, as 
shown in Fig. 18. 

The element is analyzed utilizing the four methodologies illustrated 
in Fig. 19. Fig. 19(a) exhibits solution of the NURBS-boundary-based 
SBFEM. Where the coordinates of the control point (red circle) of the 
NURBS boundary are [0.5 0.5; 0 1; − 0.5 0.5](mm), the knot vector is [0 
0 0 1 1 1 1], and the corresponding weight is [1

̅̅̅
2

√
/2 1], the degree is set 

to 2. The remaining node coordinates are [− 0.5 0.5; − 0.5 − 0.5; 0.5 
− 0.5; 0.5 0.5] (mm), with the notable observation that the starting and 
ending control points of the NURBS curve fall exactly on the element 
node. The force with a magnitude of 10 N are applied to the left and right 
tips of the element, while the left and right bottom ends are fixed. The 
elastic modulus is set at 1000 Mpa, and Poisson’s ratio is 0.3. Addi-
tionally, the analysis concept of HQSBFEM is introduced, which estab-
lishes a linear connection between node and node of boundary element, 
as illustrated in Fig. 19(b). In order to facilitate a more comprehensive 

Fig. 18. Diagram of curve boundary element.  

Fig. 19. Curve boundary element, (a) NURBS-boundary, (b) linear boundary, (c) quadratic boundary, (d) FEM.  

Fig. 20. The deformed boundary element, (a) NURBS-boundary, (b) linear boundary, (c) quadratic boundary, (d) FEM.  
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comparison, the polygon SBFEM of the quadratic curve boundary is 
utilized to analyze the aforementioned element, as depicted in Fig. 19 
(c). And Fig. 19(d) shows the solution of the finite element software 
when the boundary element is discretized into four elements. 

The deformed boundary elements corresponding to Fig. 19 are 
shown in Fig. 20. The maximum node displacements of NURBS- 
boundary, linear boundary and quadratic boundary are 0.0325 mm, 
0.0199 mm and 0.0312 mm respectively. Where the blue dashed mesh 
represents the initial element while the black mesh depicts the deformed 
element. Furthermore, the NURBS-boundary node displacement is more 
similar to the displacement 0.04392 mm when the finite element soft-
ware divides multiple meshes, indicating that the proposed method is 

more advantageous. 

5.2. Example 2 

The purpose of this example is to validate the applicability of 
NQSBFEM. Fig. 21 illustrates an infinite plane with hole under remote 
uniaxial uniform tension f = 1 N. The circular hole is represented by a 
NURBS curve, with a radius of 0.5 mm and control points (red points) at 
[0.5 0; 0.5 − 0.5; 0 − 0.5; − 0.5 − 0.5; − 0.5 0; − 0.5 0.5; 0 mm 0.5; 0.5 0.5; 
0.5 0] (mm). The knot vector is [0 0 0 1/4 1/4 2/4 2/4 3/4 3/4 1 1 1], 
the weight are [1 

̅̅̅
2

√
/2 1 

̅̅̅
2

√
/2 1 

̅̅̅
2

√
/2 1 

̅̅̅
2

√
/2 1], and the degree is set 

to 2. The elastic modulus is defined as1000 MPa and Poisson’s ratio as μ 
= 0.3. Computation is performed on a PC with 12th Gen Intel(R) Core 
(TM) i7–12700F 2.10 GHz CPU and 16 GB RAM. 

A square of dimension 4 × 4 is employed around the circular hole 
instead of the infinite plane to model, and the displacement’s exact so-
lution is specified as the boundary conditions for all four sides of the 
square. The exact solution for this problem in polar coordinates (ρ, θ) 
[41] is provided as follows 

ux =
fr

8G

[
ρ
r
(1 + κ)cosθ +

2ρ
r
((1 + κ)cosθ + cos3θ) −

2ρ3

r3 cos3θ
]

uy =
fr

8G

[
ρ
r
(κ − 3)sinθ +

2ρ
r
((1 − κ)sinθ + sin3θ) −

2ρ3

r3 sin3θ
] (38)  

where G is the shear modulus and κ is Kolosov constant, defined as 

κ =

⎧
⎪⎪⎨

⎪⎪⎩

3 − μ
1 + μ for plane stress

3 − 4μ for plane strain
(39)  

When both the inner and outer boundary seed points are set to 4, Fig. 22 
illustrates the quadtree deformation of NQSBFEM and HQSBFEM. It can 
be observed intuitively that in Fig. 22(a), the inner boundary retains its 
circular characteristics, with the orange element representing the 
boundary element, which can be addressed using the method described 
in Section 3.4. Conversely, Fig. 22(b) exhibits a diamond-shaped struc-
ture, which obviously loses the basic characteristic of a circle and 
inevitably introduces significant errors. In this context, further mesh 
refinement is required. 

In order to further investigate the impact of mesh refinement on the 
results, the structural deformation under the aforementioned methods 

Fig. 21. Infinite plane with hole.  

Fig. 22. Structural quadtree deformed mesh, (a) NQSBFEM, (b) HQSBFEM.  

Table 1 
Comparison of quadtree deformed mesh under different smallest sub-cell level.  

Sub-cell level 26 25 24 23 

NQS 
BFEM 

HQS 
BFEM 
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are presented in the Table 1 when using a seed number of 130 for the 
inner boundary and 39 for the outer boundary, along with smallest sub- 
cell level of 26, 25, 24, and 23. It is evident that even with continuous 
mesh refinement, NQSBFEM can successfully perform the corresponding 
calculations, thereby demonstrating its excellent applicability and 
consistently yielding smooth boundaries. Different from literature [25], 
the proposed method enables the adaptive updating of NURBS infor-
mation in response to changes in the quadtree mesh, thus avoiding 
manual insertion of new NURBS information. Furthermore, HQSBFEM 
tends to exhibit smoother inner boundaries as a result of mesh 
refinement. 

For the purpose of error estimation and convergence research, the 
relative displacement error norm Nrde is utilized for verification. Its 
mathematical expression is as follows 

Nrde =
‖ uexa − uh ‖

uexa (40)  

where uexa and uh represent the analytical solution and the numerical 
solution, respectively. Under the case of 5 kinds of mesh division, the 
relationship between the relative displacement error norm, time 
(including pre-processing + analysis solution), the numbers of element 
and degree of freedom (DOF) are shown in the Table 2. Fig. 23 shows the 
corresponding comparison curve of the table. 

By combining the Table 2 and the Fig. 23, it can be observed that as 
the mesh is continuously subdivided, the relative displacement error 
norm under NQSBFEM and HQSBFEM gradually decreases, indicating a 
convergence trend. The former exhibits smaller Nrde values under the 
same number of elements, suggesting superior analytical accuracy. 
Moreover, as the number of DOFs increases, both methods experience an 
increase in computation time. The NURBS boundary of NQSBFEM is 
augmented with additional control points, depicted as blue asterisks in 
Fig. 24, resulting in a corresponding increase in its solution time, where 
the red circle is the control point on the node. Nevertheless, for the case 
with 2448 DOF, NQSBFEM achieves better Nrde than HQSBFEM with 
4544 DOF. Specifically, the former requires 26.8 % less computation 
time compared to the latter. In other words, NQSBFEM can achieve 
higher computational accuracy with fewer mesh divisions while saving 
time and cost. 

5.3. Example 3 

This example presents a simplistic petal structure for stress analysis. 
The design domain of the petal structure is depicted in Fig. 25, where the 
boundary of the circle is represented by a NURBS curve. The control 
points are located at coordinates [2 0; 2 1; 1 1; 1 2; 0 2; − 1 2; − 1 1; − 2 1; 

Table 2 
The relationship between the relative displacement error norm, time, the 
numbers of element and DOFs.  

Element 
numbers 

DOFs Nrde Time(s) 

NQS 
BFEM 

HQS 
BFEM 

NQS 
BFEM 

HQS 
BFEM 

NQS 
BFEM 

HQS 
BFEM 

16 72 56 0.01658 0.04101 0.08022 0.08000 
156 464 400 0.00684 0.01428 0.10425 0.10222 
380 1104 976 0.00397 0.00633 0.11351 0.10899 
860 2448 2192 0.00229 0.00308 0.15219 0.14384 
1780 5056 4544 0.00192 0.00239 0.23511 0.20799  

Fig. 23. Comparison curves between NQSBFEM and HQSBFEM, (a) relative displacement error norm, (b) time.  

Fig. 24. Schematic diagram of NURBS control points under different mesh divisions, (a) 156, (b) 380, (c) 860, (d) 1780.  
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− 2 0; − 2 − 1; − 1 − 1; − 1 − 2; 0 − 2; − 1 − 2; 1 − 1; 2 − 1; 2 0] (mm). The 
knot vector is defined as [0 0 0 1/8 1/8 2/8 2/8 3/8 3/8 4/8 4/8 5/8 5/8 
6/8 6/8 7/8 7/8 1 1 1], the weights are [1 

̅̅̅
2

√
/2 1 

̅̅̅
2

√
/2 1 

̅̅̅
2

√
/2 1 

̅̅̅
2

√
/2 

1 
̅̅̅
2

√
/2 1 

̅̅̅
2

√
/2 1 

̅̅̅
2

√
/2 1 

̅̅̅
2

√
/2 1], and the degree is set to 2. A load of 

magnitude 100 N is applied to both the top and bottom of the petal 
structure. The left end is fixed, while the right end is only fixed in the Y- 

axis direction. The modulus of elasticity is specified as 1000 MPa and 
Poisson’s ratio is set at 0.3. 

The basic settings of the quadtree are as follows: the size is set to 210 

= 1024, the level of largest sub-cell is limit to 29 = 512, and the level of 
smallest sub-cell is limit to 23 = 8. When setting the seed points of the 
boundary at 120, Table 3 displays boundary elements number, total 
elements number and maximum von-Mises stress values under 
HQSBFEM and NQSBFEM. Figs. 26 and 27 illustrate the corresponding 
mesh division and stress distribution. Additionally, we also analyze the 
petal structure with the assistance of finite element software, in order to 
achieve a better comparison effect, so that the number of boundary el-
ements after the mesh division is equal to the number of elements in the 
quadtree decomposition, both are 248. 

Fig. 25. Schematic diagram of petal structure.  

Table 3 
Boundary elements number, total elements number and maximum von-Mises 
stress values under HQSBFEM, NQSBFEM and FEM.   

Boundary elements Total elements Maximum stress (MPa) 

HQSBFEM 248 507 14.3843 
NQSBFEM 248 507 16.2147 
FEM 248 3803 18.7005  

Fig. 26. Divided mesh diagram, (a) HQSBFEM, (b) NQSBFEM, (c) FEM.  

Fig. 27. Von-Mises stress distribution diagram, (a) HQSBFEM, (b) NQSBFEM, (c) FEM.  

Fig. 28. Square plate with two irregular holes.  
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It can be observed from the stress diagram that despite having an 
equal number of boundary elements, there are more meshes divided by 
finite element software resulting in larger stress values obtained. The 
maximum stress value obtained by NQSBFEM under similar mesh di-
visions surpasses that obtained by HQSBFEM but aligns more closely 
with results from finite element software analysis. In addition, the stress 
values at the four corners of NQSBFEM are comparatively higher when 
compared to the other two methods. This can be attributed to employing 
NURBS curves on boundaries along with high-order continuity between 
elements, which leads to stress results that are more consistent with 

Table 4 
The relationship between the element numbers, DOFs, maximum von-Mises 
stress values and time.   

Element numbers DOFs Maximum stress (MPa) Time(s) 

NQSBFEM 699 2254 7.22 0.15198 
HQSBFEM 699 2016 6.32 0.14297 
HQSBFEM 1497 4240 7.17 0.20562  

Fig. 29. Schematic diagram of NQSBFEM with 699 elements, (a) Quadtree deformed mesh, (b) Von-Mises stress.  

Fig. 30. Schematic diagram of HQSBFEM with 699 elements, (a) Quadtree deformed mesh, (b) Von-Mises stress.  

Fig. 31. Schematic diagram of HQSBFEM with 1497 elements, (a) Quadtree deformed mesh, (b) Von-Mises stress.  
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physical laws. 

5.4. Example 4 

This example provides a square plate with two irregular holes to 
measure the efficiency and result accuracy of the NQSBFEM. The side 
length of the plate is 10 mm. A uniform load of 1 N/mm is applied to [2, 
8] segment of the upper boundary, the lower boundary is fixed, and the 
dimensions and control points of the holes are shown in Fig. 28. The 
modulus of elasticity is specified as 1000 MPa and Poisson’s ratio is set 
at 0.3. 

Table 4 displays element numbers, DOFs, maximum von-Mises stress 
values and time under HQSBFEM and NQSBFEM. The corresponding 
quadtree deformed meshes and Von-Mise stress diagrams are displayed 
in Figs. 29-31. 

When the number of divided elements is 699, NQSBFEM 

demonstrates superior stress performance compared to HQSBFEM, 
despite the time increase caused by the introduction of additional con-
trol points. The stress performance of HQSBFEM approaches that of 
NQSBFEM with low mesh division when the number of divided elements 
is 1497, and the time consumed by HQSBFEM is 0.20562. Specifically, 
the NQSBFEM requires 26.1 % less computation time compared to the 
HQSBFEM, indicating that former achieves higher computational ac-
curacy with fewer mesh divisions while saving time. 

5.5. Example 5 

This example provides a wrench structure for analysis and the size 
information is illustrated in Fig. 32. The groove of the wrench head 
remains fixed while uniform load of 0.025 N/mm is applied to the 
handle. The control points of wrench structure are presents in Fig. 33, 
and the degree is set to 2. The modulus of elasticity is specified as 1000 
MPa and Poisson’s ratio is set at 0.3. 

The Von-Mises stress diagram of the wrench structure under 
NQSBFEM is presented in Fig. 34(a), where the maximum stress value is 
0.3202 with a total of 591 divided elements under quadtree decompo-
sition. In comparison, Fig. 34(b) displays the Von-Mises stress diagram 
under finite element software with a mesh consisting of 22,251 ele-
ments. It can be observed that NQSBFEM achieves superior analysis 
accuracy while utilizing fewer mesh divisions. 

6. Conclusions 

This paper proposes a NURBS-boundary-based quadtree SBFEM, 
which enables efficient and rapid solution of irregular design domain. 
Specifically, the mesh is divided using quadtree decomposition, while 
SBFEM effectively addresses the issue of hanging nodes in the quadtree 
mesh. Simultaneously, due to the accurate representation of structural 
boundaries by NURBS curves, there is no necessity for detailed mesh 
subdivision within the design domain, ultimately resulting in a reduc-
tion of time spent on such division. Numerical examples demonstrate the 
capability of proposed method to achieve adaptive meshing and 
generate NURBS curves for subsequent solution. In comparison with the 
conventional hybrid quadtree SBFEM, this method successfully fulfills 
expectations in terms of displacement and stress. Furthermore, the 
method exhibits significant potential in addressing challenges such as 
fracture, heat conduction, and dynamics. However, there still exist ob-
stacles concerning the geometric description and solution of plates, 
shells, and especially thin-walled cylinders. Moving forward, the focus 
of our research will be on exploring novel approaches to address the 
aforementioned challenges, as well as investigating efficient and high- 

Fig. 32. Wrench structure and its size information.  

Fig. 33. Control points of wrench structure.  

Fig. 34. Von-Mises stress distribution diagram, (a) HQSBFEM, (b) FEM.  
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precision solutions for three-dimensional solid structures in conjunction 
with the aforementioned research. 
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